设数列{An}的前n项和为Sn=2An-2^2 (1)证明{A(n+1)-2A(n)是等比数列 (2)求A(n)的通项公
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:27:10
设数列{An}的前n项和为Sn=2An-2^2 (1)证明{A(n+1)-2A(n)是等比数列 (2)求A(n)的通项公式
1)Sn=2an-2^n
S(n+1)=2a(n+1)-2^(n+1)
相减得a(n+1)=2a(n+1)-2^(n+1)-2an+2^n
化简得a(n+1)-2an=2^n
说明{a(n+1)-2an}是等比数列
2)a(n+1)-2an=2^n
2(an-2a(n-1))=2*2^(n-1)=2^n
2^2(a(n-1)-a(n-2))=2^2*2^(n-2)=2^n
.
.
.
2^(n-1)*(a2-2a1)=2^(n-1)*2^1=2^n
上面式子相加有:
a(n+1)-2^n*a1`=(2^n)*n
Sn=2an-2^n中令n=1,a1=2
所以a(n+1)=(2^n)*(n+2)
an=(2^(n-1))*(n+1)
S(n+1)=2a(n+1)-2^(n+1)
相减得a(n+1)=2a(n+1)-2^(n+1)-2an+2^n
化简得a(n+1)-2an=2^n
说明{a(n+1)-2an}是等比数列
2)a(n+1)-2an=2^n
2(an-2a(n-1))=2*2^(n-1)=2^n
2^2(a(n-1)-a(n-2))=2^2*2^(n-2)=2^n
.
.
.
2^(n-1)*(a2-2a1)=2^(n-1)*2^1=2^n
上面式子相加有:
a(n+1)-2^n*a1`=(2^n)*n
Sn=2an-2^n中令n=1,a1=2
所以a(n+1)=(2^n)*(n+2)
an=(2^(n-1))*(n+1)
等比数列的证明方式数列An的前n项和为Sn,A1=1,A(n+1)=2Sn+1,证明数列An是等比数列
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N)(1)证明数列an+3是等比数列,(2)求数列an的通项公式
设数列{An}的前n项和Sn=2An-2^n 1.证明数列{A(n+1)-2An}是等比数列 2.求{An}的通项公式.
设数列An的前n项和Sn=2An-2^n 求A3,A4 证明A(n+1)-2An为等比
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
设数列{an}的前n项和为Sn,若a1=1,a(n+1)=(n+2/n)Sn(n属于正整数),证明:数列{Sn/n}是等
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(1)证明:{(an)-1}是等比数列.(2)求S
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
数列{an}的前n项和Sn满足:Sn =2an-3n(n∈N*) 1.证明{an+3}是等比数列
设数列An的前n项和为Sn,已知a(1)+2a(2)+3a(3)+…+na(n)=(n-1)Sn+2n(n为正整数).求
高中数列{An}前n项和Sn且A1=0 ,S(n+1)=4An+2.求证{A(n+1)-2An}为等比数列.
已知数列的前n项和为Sn,且a1=1,S(n+1)=4an+2,(1)设bn=a(n+1)--2n,求证bn是等比数列,