高数三题,急!1、连续函数f(x)满足f(x)=f(2a-x)(a≠0),为任意常数,则区间[-c,c]上定积分∫f(a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 12:19:30
高数三题,急!
1、连续函数f(x)满足f(x)=f(2a-x)(a≠0),为任意常数,则区间[-c,c]上定积分∫f(a-x)dx=
2、函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1.证明区间[0,1]上∃ε、η,使1/f(ε) +1/f(η)=2.
3求级数和,见附图.
1、连续函数f(x)满足f(x)=f(2a-x)(a≠0),为任意常数,则区间[-c,c]上定积分∫f(a-x)dx=
2、函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1.证明区间[0,1]上∃ε、η,使1/f(ε) +1/f(η)=2.
3求级数和,见附图.
一楼1题肯定错了,没这个选项,我设特征函数选了[0,c]上2∫f(a-x)dx;2题不知道题对不对,据说是回忆版试卷,我也得到f(ε) +f(η)=2;3题是对的哈,和我一样,麻烦大侠再仔细考虑以下前两题。
1题条件只给的是个对称函数而已啊,得不出奇偶性。
1.f(a+x)=f(2a-(a+x))=f(a-x)-------------------------------------(1)
I=∫[-c,c]f(a-x)dx=∫[-c,0]f(a-x)dx+∫[0,c]f(a-x)dx
设y=-x
I=-∫[c,0]f(a+y)dy+∫[0,c]f(a-x)dx------------------------------(2)
从(1),(2)
I=∫[0,c]f(a-y)dy+∫[0,c]f(a-x)dx=2∫[0,c]f(a-x)dx
2.
函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1,
区间[0,1]上∃ε、η,使(f(ε)=1,f(η)=1 ==>
1/f(ε) +1/f(η)= [f(ε) +f(η) ]/ (f(ε)*f(η))=2
函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1,区间[0,1]上∃z,f(z)=1/2
中值定理,区间[0,z]上∃ε,f'(ε)=[f(z)-f(0)]/(z-0)=f(z)/z=1/(2z)
中值定理,区间[z,1]上∃ε,f'(η)=[f(1)-f(z)]/(1-z)=(1-f(z))/(1-z)=1/[2(1-z)]
1/ f'(ε)+1/f'(η)=2z+2(1-z)=2
3.
用夹逼准则,原数列为1/(n^2 +1)+ 2/(n^2 +2)+.+n/(n^2 +n)
>1/(n^2 +n)+2/(n^2 +n)+.+n/(n^2 +n)=1/2.(也就是把分母都变成(n^2 +n) ).
另一方面,原数列
I=∫[-c,c]f(a-x)dx=∫[-c,0]f(a-x)dx+∫[0,c]f(a-x)dx
设y=-x
I=-∫[c,0]f(a+y)dy+∫[0,c]f(a-x)dx------------------------------(2)
从(1),(2)
I=∫[0,c]f(a-y)dy+∫[0,c]f(a-x)dx=2∫[0,c]f(a-x)dx
2.
函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1,
区间[0,1]上∃ε、η,使(f(ε)=1,f(η)=1 ==>
1/f(ε) +1/f(η)= [f(ε) +f(η) ]/ (f(ε)*f(η))=2
函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1,区间[0,1]上∃z,f(z)=1/2
中值定理,区间[0,z]上∃ε,f'(ε)=[f(z)-f(0)]/(z-0)=f(z)/z=1/(2z)
中值定理,区间[z,1]上∃ε,f'(η)=[f(1)-f(z)]/(1-z)=(1-f(z))/(1-z)=1/[2(1-z)]
1/ f'(ε)+1/f'(η)=2z+2(1-z)=2
3.
用夹逼准则,原数列为1/(n^2 +1)+ 2/(n^2 +2)+.+n/(n^2 +n)
>1/(n^2 +n)+2/(n^2 +n)+.+n/(n^2 +n)=1/2.(也就是把分母都变成(n^2 +n) ).
另一方面,原数列
定积分:设f(x)在区间[a,b]上有连续函数,且f(a)=f(b)=0,∫ (b,a)f^2(x)dx=1,证明:∫(
已知函数f(x)的定义域为R,满足f(-x)=1/f(x)>0,且g(x)=f(x)+c(c为常数)在区间[a,b]上是
f(x)为[-a,a]上的连续函数,则定积分∫f(-x)dx= (积分上限a下限-a)
设f﹙x﹚为[-a,a]上的连续函数,则定积分∫﹙-a到a﹚f﹙-x﹚dx=_____
用C语言编程,已知f(x)=(1+x^2),编写函数用梯形法计算f(x)在区间[a,b]上的定积分
设函数f(x)满足af(x)+bf(1/x)=c/x(其中a、b、c均为常数且a≠b),则f'(x)=
一道定积分证明题!设f(x),g(x)为连续函数,试证明(上限a 下限0 )∫x{f[g(x)+f[g(a-x)]}dx
f(x)为连续函数且f(x)=x³+5∫f(x)dx(定积分范围上1下0) 求f(x)
设f(x)是连续函数,则d(∫下0上xf(x-t)dt)/dx=(); a.f(0),b.-f(0),c.f(x),d.
已知函数f(x)的定义域为R,且f(-x)=1/f(x) >0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单
已知函数f(x)的定义域为R,且f(负x)=f(x)分之1大于0,若g(x)=f(x)加c(c为常数)在区间[a,b]上
已知函数f(x)的定义域为R,且f(-x)=1/f(x)大于0,若g(x)=f(x)+c(c为常数)在区间大于a小于b上