此题是关于数学考研的曲面积分题∫∫(xdydz+ydzdx+zdxdy)/(x2+y2+z2)3/2,曲面是上半椭圆球面
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:29:25
此题是关于数学考研的曲面积分题∫∫(xdydz+ydzdx+zdxdy)/(x2+y2+z2)3/2,曲面是上半椭圆球面
椭圆球面方程为x2/4+y2/9+z2/25=1(z ≥ 0)的上侧.(注:分母后面的3/2意思是平方和的2分之3次方
因为我做了第一问,这是第二问,第一问是的曲面是球面方程,我会做,但这一问的方程是椭圆球面,但不知道怎么构造方程解题,我估计也是用高斯公式,但不知道怎么下手.
椭圆球面方程为x2/4+y2/9+z2/25=1(z ≥ 0)的上侧.(注:分母后面的3/2意思是平方和的2分之3次方
因为我做了第一问,这是第二问,第一问是的曲面是球面方程,我会做,但这一问的方程是椭圆球面,但不知道怎么构造方程解题,我估计也是用高斯公式,但不知道怎么下手.
再问: 我书上的答案是2π,如果不按照刚网上搜到的解题方法,我会认为你的肯定正确,但又得不到2π这个值啊,会以为答案是错的。但是刚搜到的解题方法我又不理解,他不但和你一样,构造了一椭圆平面把底部封住,就成封闭曲面了,但他又构造了一曲面,他取很小的值ξ,使 z=根号下(ξ平方-x平方-y平方),实际上他的意思是封闭曲面还要加上这个曲面,最后再减去这个曲面积分,最后的值就是2π了,WHY!
再答: 我弄错了,我计算奇点的时间算出来的是0,他这样用的是小球的挖奇点,方向下侧
再问: 您好,再打扰您一下,为什么当曲面为纯球面的时候,我计算就不需要挖奇点呢,你看,同样是分母不能为零,对于纯球面来说(0,0,0)也是奇点,但我的方法是x2+y2+z2=a2带入到分母当中,直接高斯得整个球面的面积,然后取面积的一半,就是球面上侧的面积,根本没有挖奇点这个做法,怎么到了椭圆球面就要挖奇点这个做法呢,能给我讲解一下吗,给您加分,万分感谢!
再答: 纯球也需要挖奇点,只是有的曲面代入积分函数后可以消去奇点而已!
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
用高斯公式计算曲面积分∫∫(zdxdy+xdydz+ydzdx)/(x^2+y^2+z^2)
利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=
利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2
高数 第二型曲面积分被积函数为xdydz+ydzdx+zdxdy积分曲面为螺旋面 x=u*cosv,y=y*sinv,z
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之
利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2
曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-