在欧氏空间R^3中定义线性变换σ,对于任意(x1,x2,x3)∈R^3,σ((x1,x2,x3))=(2x1+x2+x3
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:32:33
在欧氏空间R^3中定义线性变换σ,对于任意(x1,x2,x3)∈R^3,σ((x1,x2,x3))=(2x1+x2+x3,x1+2x2+x3,x1+x2+2x3)
1,写出线性变换σ在标准正交基ε1,ε2,ε3下的矩阵A
2.证明σ是对称变换
3.求A的所有特征值和特征向量
4.求R^3的一组标准正交基,使得σ在该基下的矩阵是对角矩阵
1,写出线性变换σ在标准正交基ε1,ε2,ε3下的矩阵A
2.证明σ是对称变换
3.求A的所有特征值和特征向量
4.求R^3的一组标准正交基,使得σ在该基下的矩阵是对角矩阵
由σ的定义得
σ(ε1)=σ((1,0,0)^T)=(2,1,1)^T=2ε1+ε2+ε3
σ(ε2)=σ((0,1,0)^T)=(1,2,1)^T=ε1+2ε2+ε3
σ(ε3)=σ((0,0,1)^T)=(1,1,2)^T=ε1+ε2+2ε3
σ(ε1,ε2,ε3)=(ε1,ε2,ε3)A
A =
2 1 1
1 2 1
1 1 2.
由于A^T=A,所以σ在一个标准正交基下的矩阵是对称矩阵
所以σ是对称变换.(定理)
|A-λE| = (4-λ)(1-λ)^2
所以 A 的特征值为 4,1,1.
(A-4E)X=0 的基础解系为 a1=(1,1,1)^T.
属于特征值4的全部特征向量为 k1a1,k1≠0.
(A-E)X=0 的基础解系为 a2=(1,-1,0)^T,a3=(1,1,-2)^T.
属于特征值1的全部特征向量为 k2a2+k3a3,k2,k3不全为0.
将a1,a2,a3单位化得R^3的标准正交基
b1=(1/√3)(1,1,1)^T
b2=(1/√2)(1,-1,0)^T
b3=(1/√6)(1,1,-2)^T
且 P=(b1,b2,b3)是正交矩阵,满足 P^-1AP = diag(4,1,1)
由 (b1,b2,b3)=(ε1,ε2,ε3)P 得
σ(b1,b2,b3)=σ(ε1,ε2,ε3)P
= (ε1,ε2,ε3)AP
= (b1,b2,b3)P^-1AP
= (b1,b2,b3)diag(4,1,1).
故 σ在R^3的标准正交基b1,b2,b3下的矩阵是对角矩阵diag(4,1,1).
σ(ε1)=σ((1,0,0)^T)=(2,1,1)^T=2ε1+ε2+ε3
σ(ε2)=σ((0,1,0)^T)=(1,2,1)^T=ε1+2ε2+ε3
σ(ε3)=σ((0,0,1)^T)=(1,1,2)^T=ε1+ε2+2ε3
σ(ε1,ε2,ε3)=(ε1,ε2,ε3)A
A =
2 1 1
1 2 1
1 1 2.
由于A^T=A,所以σ在一个标准正交基下的矩阵是对称矩阵
所以σ是对称变换.(定理)
|A-λE| = (4-λ)(1-λ)^2
所以 A 的特征值为 4,1,1.
(A-4E)X=0 的基础解系为 a1=(1,1,1)^T.
属于特征值4的全部特征向量为 k1a1,k1≠0.
(A-E)X=0 的基础解系为 a2=(1,-1,0)^T,a3=(1,1,-2)^T.
属于特征值1的全部特征向量为 k2a2+k3a3,k2,k3不全为0.
将a1,a2,a3单位化得R^3的标准正交基
b1=(1/√3)(1,1,1)^T
b2=(1/√2)(1,-1,0)^T
b3=(1/√6)(1,1,-2)^T
且 P=(b1,b2,b3)是正交矩阵,满足 P^-1AP = diag(4,1,1)
由 (b1,b2,b3)=(ε1,ε2,ε3)P 得
σ(b1,b2,b3)=σ(ε1,ε2,ε3)P
= (ε1,ε2,ε3)AP
= (b1,b2,b3)P^-1AP
= (b1,b2,b3)diag(4,1,1).
故 σ在R^3的标准正交基b1,b2,b3下的矩阵是对角矩阵diag(4,1,1).
一道线性代数题设R^3上的线性变换A定义为:若x=(x1,x2,x3)T,则A(x)=(2x1-x2,x2+x3,x1)
题目给出两组基x1,x2,x3和y1,y2,y3定义线性变换Txi=yi(i=1,2,3)分别计算T在基x1,x2,x3
xi ∈ R* x1^2+x2^2+x3^2=1 求x1/(1-x1^2)+x2/(1-x2^2)+x3/(1-x3^2
{2X1-X2+3X3=3
方程组3x1+x2+x3
已知函数f(x)=-x³,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)
线性方程组{2x1-x2-2x3=λx1{5x1-3x2-3x3=λx2{-x1+2x3=-λx3有非零解,则λ=
写出下面线性规划的对偶规划min Z=3X1+2X2+X3; X1+X2+X3≤6;X1-X3≥4;X2-X3≥3;X1
x1,x2,x3,是x^3+px+2=0的三个根,计算行列式 :|x1 x2 x3| |x2 x3 x1| |x3 x1
求线性方程组 x2-x3-x4=0 x1+x2-x3+3x4=1 x1-x2+x3+5x4=-1 x1+2x2-2x3+
已知x1,x2,x3∈(0,+∞),且x1+x2+x3=1.求证x1^2/(x1+x2)+x2^2/(x2+x3)+x3
设X1,X2,X2是方程X3+PX+q=0的3个根,计算行列式 X1 X2 X3 X3 X1 X2 X2 X3 X1