桥函数法二次函数迭代许多书上都有介绍桥函数法的二次函数迭代.比如二次函数f(x)=ax^2+bx+c (a≠0)令g(x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 05:00:14
桥函数法二次函数迭代
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
实际上,楼主所说的桥函数迭代法的具体定义是
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
二次函数证明题证明二次函数f(x)=ax的平方+bx+c(a
讨论二次函数f(x)=ax^2+bx+c(a≠0)的单调区间.
已知二次函数f(x)=ax^2+bx+c
增函数 证明二次函数f(x)=ax^2+bx+c (a
二次函数f(x)=ax^2+bx+c(x属于R,a不等于0)
已知二次函数f(x)=ax的方+bx+c,一次函数g(x)=ax+b
设二次函数f(x)=ax^2+bx+c,a>0,c
已知二次函数f(x)=ax²+bx+c.
已知二次函数f(x)=ax平方+bx+c
已知二次函数f(x)=ax²+bx+c
已知二次函数f(x)=ax²+bx+3,其导函数f'(x)=2x-8 求a,b的值 设函数g(x)
已知二次函数f(x)=ax²+bx+c(a≠0)【题干】