A,B,C都是锐角,cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2,求A+B+C=180
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 23:35:13
A,B,C都是锐角,cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2,求A+B+C=180
cosA+cosB+cosC=1+4sinA/2 * sinB/2 * sinC/2
2cos(A/2+B/2)cos(A/2-B/2)+1-2(sinC/2)^2=1+4sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=2sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=sinC/2*[cos(B/2-A/2)-cos(B/2+A/2)]
(sinC/2)^2+sinC/2*cos(B/2-A/2)-sinC/2*cos(B/2+A/2)-cos(A/2+B/2)cos(A/2-B/2)=0
[sinC/2+cos(B/2-A/2)][sinC/2-cos(B/2+A/2)]=0
前式在我附加的ABC为锐角的情况下显然是不能为0的.
(当然可能是别的条件,总之应该可以说明前面这个不为0)
故只能后式为0
sinC/2=cos(B/2+A/2)
C/2+B/2+A/2=90°
A+B+C=180 °
2cos(A/2+B/2)cos(A/2-B/2)+1-2(sinC/2)^2=1+4sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=2sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=sinC/2*[cos(B/2-A/2)-cos(B/2+A/2)]
(sinC/2)^2+sinC/2*cos(B/2-A/2)-sinC/2*cos(B/2+A/2)-cos(A/2+B/2)cos(A/2-B/2)=0
[sinC/2+cos(B/2-A/2)][sinC/2-cos(B/2+A/2)]=0
前式在我附加的ABC为锐角的情况下显然是不能为0的.
(当然可能是别的条件,总之应该可以说明前面这个不为0)
故只能后式为0
sinC/2=cos(B/2+A/2)
C/2+B/2+A/2=90°
A+B+C=180 °
在三角形abc中,cosA-2cosC/cosB=2c-a/b,求sinC/sinA
关于三角恒等变换的题已知锐角A、B、C满足sinA+sinC=sinB,cosA-cosC=cosB,求A-B的值.
cosB/cosC=-b/2a+c为什么可以直接转化成cosB/cosC=-sinB/(2sinA+sinC)?
在三角形abc中,cosA-2cosC/cosB=2c-a/b,①求sinC/sinA②若cosB=1/4,b=2,求三
在三角形ABC中,cosA-2cosC/cosB=2c-a/b,1.求sinC/sinA 2.若cosB=1/4,△AB
SINA+SINB+SINC=COSA+COSB+COSC=0,求TAN(A+B+C)+TANA*TANB*TANC
已知 A+B+C=π,sinA+sinB+sinC=cosA+cosB+cosC.求 ( cos2A+cos2B+cos
设A,B,C∈(0,π2),且sinA-sinC=sinB,cosA+cosC=cosB,则B-A等于( )
已知锐角abc满足sina+sinc=sinb,cosa-cosc=cosb,求a-b的值
2sinC-sinA/sinB=cosA-2cosC/cosB 如何整理求得sin(A+B)=2sin(B+C)
设A,B,C属于(0,90度),SINA+SINC=SINB,COSB+COSC=COSA,则B-A等于
sina+sinb+sinc=0 cosa+cosb+cosc=0求证cos*2a+cos*2b+cos*2c=3|2