作业帮 > 数学 > 作业

如何证明两个奇数的平方和不是完全平方数?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 16:55:40
如何证明两个奇数的平方和不是完全平方数?
如何证明两个奇数的平方和不是完全平方数?
首先我们知道奇数的平方除于4余1 ,偶数的平方除于4余0.
所以两个奇数的平方和除于4余2,
如果这两个奇数的平方和是奇数的完全平方数,则余数该为1,
如果这两个奇数的平方和是偶数的完全平方数,则余数该为0.
但是2既不是1也不是0.
所以两个奇数的平方和既不是奇数的完全平方数,也不是偶数的完全平方数,
所以两个奇数的平方和不是完全平方数.
用数论知识可能看起来更清楚:
如果a是奇数,则a^2=1(mod4)
如果a是偶数,则a^2=0(mod4)
所以对于任意一个数,它的完全平方数除于4只能是余1或者余0.
所以如果 a,b都是奇数,则a^2+b^2=2(mod4),
而任意数的平方不可能除于4余2.
所以如果 a,b都是奇数,则a^2+b^2不是一个平方数.