三角形ABC中,角A,B,C对边的边长分别是a ,b ,c,且a(cosB+cosC)=b+c.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 01:50:23
三角形ABC中,角A,B,C对边的边长分别是a ,b ,c,且a(cosB+cosC)=b+c.
(1)求证A=90度 (2)若三角形ABC外接圆半径为1,求三角形ABC周长的取值范围
(1)求证A=90度 (2)若三角形ABC外接圆半径为1,求三角形ABC周长的取值范围
(1)
∵a/sinA=b/sinB=C/sinC=2R(R为三角形外接圆半径)
所以原式左右各除以2R后,可化为:
sinA(cosB+cosC)=sinB+sinC;而A+B+C=180°.即sinA=sin(B+C)
∴[sin(B+C)]*[cosB+cosC]=sinB+sinC
∴[sinBcosC+sinCcosB]*[cosB+cosC]=sinB+sinC
∴sinBcosBcosC+sinBcos²C+sinCcos²B+sinCcosCcosB=sinB+sinC
∴sinB(cos²C-1+cosBcosC)=sinC(1-cos²B-cosBcosC)
∴sinB(cosBcosC-sin²C)=sinC(sin²B-cosBcosC)
∴(sinB+sinC)(cosB+cosC)=sinCsin²B+sinBsin²C
∴(sinB+sinC)cosBcosC=sinBsinC(sinB+sinC)
∴cosBcosC-sinBsinC=0
∴cos(B+C)=0,即B+C=90°
∴A=90°
(2)
∵外接圆半径R=1
∴a=2RsinA=2,b²+c²=a²=4
∴(b+c)²≤b²+c²+4=8
∴b+c≤2*根号2
而b+c≥2*根号bc
∴b+c>2
∴周长=(a+b+c)∈(4,2+2*根号2]
∵a/sinA=b/sinB=C/sinC=2R(R为三角形外接圆半径)
所以原式左右各除以2R后,可化为:
sinA(cosB+cosC)=sinB+sinC;而A+B+C=180°.即sinA=sin(B+C)
∴[sin(B+C)]*[cosB+cosC]=sinB+sinC
∴[sinBcosC+sinCcosB]*[cosB+cosC]=sinB+sinC
∴sinBcosBcosC+sinBcos²C+sinCcos²B+sinCcosCcosB=sinB+sinC
∴sinB(cos²C-1+cosBcosC)=sinC(1-cos²B-cosBcosC)
∴sinB(cosBcosC-sin²C)=sinC(sin²B-cosBcosC)
∴(sinB+sinC)(cosB+cosC)=sinCsin²B+sinBsin²C
∴(sinB+sinC)cosBcosC=sinBsinC(sinB+sinC)
∴cosBcosC-sinBsinC=0
∴cos(B+C)=0,即B+C=90°
∴A=90°
(2)
∵外接圆半径R=1
∴a=2RsinA=2,b²+c²=a²=4
∴(b+c)²≤b²+c²+4=8
∴b+c≤2*根号2
而b+c≥2*根号bc
∴b+c>2
∴周长=(a+b+c)∈(4,2+2*根号2]
在三角形ABC中,a,b,c分别是角A,B,C的对边且cosB/cosC=-b/2a+c求B
在三角形ABC中,a,b,c分别是角A,B,C的对边,且cosC/cosB =(3a-c)/b
在三角形ABC中,已知角A,B,C所对的三条边分别是a,b,c,且cosB/cosC=-b/2a+c
在三角形ABC中,角A、B、C的对边分别为a、b、c,且cosC/cosB=3a-c/b,求sinB的值
在三角形ABC中角A.B.C所对的边分别为a.b.c 且cosC/cosB=3a-c/b
在△ABC中,a.b.c分别是角A.B.C对边的长,且满足cosB/cosC=-b/(2a+c)
三角形ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且cosB/cosC=-b/2a+c.
在三角形ABC中,abc分别是角A,B,C对边,且cosC/cosB=(3a-c)/b,求sinB
在三角形ABC中,A,B,C,的对边分别是a,b,c,已知3a(cosA)=c(cosB)+b(cosC) a=1,co
在三角形ABC中,a,b,c分别是角A,B,C对边的长,且满足cosB/cosC=-b/(2a+c),求角B的值.若b=
在三角形ABC中 a,b,c分别是角A,B,C的对边 且cosB/cosC=-b/(2a+c) 求角B大小 (2)若b=
在三角形ABC中 a b c 分别是A B C的对边 cosC/cosB=3a-c/b 求sinB