数学论文500字以上.内容可以是某一道经典题的一题多解,也可以是某一知识点应用的不同题型.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 00:47:49
数学论文500字以上.内容可以是某一道经典题的一题多解,也可以是某一知识点应用的不同题型.
一 、引子 北京市中学生数学竞赛有着悠久的历史.近十几年来,北京市中学生数学竞赛是在初二和高一两个年级进行.1990年起分为初试和复试,初试以普及为主,复试则适度提高.命题紧密结合中学数学教学实际,活而不难,趣而不怪,巧而不偏,力求体现出科学性、知识性、应用性、启发性、趣味性的综合统一.数学竞赛活动是备受青少年喜爱的一种数学课外活动.通过有趣味、有新意、有水平的题目,开发智力,引导学生提高数学素质.数学竞赛活动是落实数学素质的一种好形式.北京市十几年的数学竞赛积累了一批闪耀着数学思想和智慧的好题目,引导学生研究赏析它,是一件赏心阅目、幸福愉快的事情.下面,笔者尝试通过一道北京市高一年级数学竞赛的初试题的一题多解,与读者共同享受数学智慧的灿烂阳光
二、题目
北京市1992年数学竞赛高中一年级初试“二、填空题”第4题如下:
4、若 sin2x+cosx+a=0 有实根,试确定实数a的取值范围是什么?
题目短小干炼,满分8分.
三、试解
方程中的求知数是x,出现了x的两种三角函数Sinx,Cosx..而Sin2x=1-cos2x,好了,变一变,原方程就化成了
cos2x-cosx-1-a=0 ①
如果原方程中 x有实根,则cosx就会有对应的实数,令t= cosx,这样方程①就化成了
t2-t-1-a=0 ②
因此,方程②就应该有实数根,因此它的判别式△=(-1)2-4(-1-a)=4a+5≥0,所以 a≥-(5/4)
故实数a的取值范围是a≥-(5/4)
这个答案对吗?
当a≥-(5/4)时,一定有△≥0,方程②一定有实数根,问题是cosx=t有实根x就一定有实数根吗?注意到余弦函数的值域是cosx∈[-1,1],故②有实根并不能保证cosx=t一定在[-1,1]内,可见上面的解答是不严密的,思维不缜密的同学可能就会在这里出错.这是试题设置的一个隐蔽的陷阱.
四、反思
怎么办呢?
如果能保证方程②的实数解t在区间[-1,1]内,则最简三角方程cosx=t就必有实数解x=2kπ±arccost,好,这样一来,问题就转化为当方程②有位于[-1,1]中的实数根时,求实数a的取值范围什么?
由方程②得:
故当a∈[-(5/4),1]∪[-(5/4),-1]=[-(5/4),1]时,原方程有关于x的实数根.
以上的方法用到了一元二次方程求根公式,用到了解两个无理不等式组成的不等式组,用到了集合的交集和并集.心里感觉踏实了,但运算较繁杂,有没有更好一些的方法?
五、改进
如果记方程②的左端为f(t),即
f(t)=t2-t-1-a
则方程②有[-1,1]中的实数解就等价于二次函数f(t)=t2-t-1-a 的图象抛物线在[-1,1]内与t轴有交点.数转化为形,以形助数.好,试试看.
当抛物线与t轴在[-1,1]内只有一个交点时,当且仅当
f(-1)f(1)≤0即
(1-a)(-1-a)≤0,解之,有 -1≤a≤1; ③
当抛物线与t轴在[-1,1]内有两个交点时,当且仅当
由③④得,当a∈[-1,1]∪[-(5/4),1]=[-(5/4),-1]时,y=f(t)与t轴在[-1,1]内有交点,方程②有实数解.
由于f(1)、f(-1),Δ等的计算比较简便,上述解法是不是比较简捷一点?
六、换个角度看问题
诗曰:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”我们前面的解题思路,都把注意力注意在了“方程有实根”上,跳不出“方程有实根”的如来佛手心,“五”中的解法就渗透了数形转换,已属巧解.如果换个角度看问题,将方程①移项变形得
a=cos2x-cosx-1
视a为x的函数,用逆向思维来思考:x有实数解,则有cosx ∈[-1,1],a=[cosx-(1/2)]2-(5/4)当cosx=(1/2)时有最小值a最小=-(5/4);当cos=-1时有最大值a最大=(9/4)-(5/4)=1,故函数值域为 a∈[-(5/4),1].反之,当a在[-(5/4),1]中取值时,cosx一定在[-1,1]中取值,x一定有实数解与之对应,你看,a的取值范围不是就求出来了吗?
七、变式
西游记中的孙悟空神通广大,能八九七十二变.好的数学题也会有一些“变式”.从上面的解法中你还能想到些什么?你能改编出一个相应的题目吗?试试看.
无独有偶,九年后的新千年第一年,2001年,北京市中学生数学竞赛高中一年能初赛试题“二、填空题”的最后一题即第8题如下:“8、若关于x的方程式sin2x+sinx+a=0 有实数解,求实数a的最大值与最小值的和”
读者诸君欣赏至此,是不是会“会心地笑了.”
八、启示
回顾以上解题过程,我们用到了方程的思想,等价转化的思想,数形结合转化的思想,变换角度看问题及逆向思维的思想.思想出智慧,智慧生妙解,妙解巧思令人陶醉.
二、题目
北京市1992年数学竞赛高中一年级初试“二、填空题”第4题如下:
4、若 sin2x+cosx+a=0 有实根,试确定实数a的取值范围是什么?
题目短小干炼,满分8分.
三、试解
方程中的求知数是x,出现了x的两种三角函数Sinx,Cosx..而Sin2x=1-cos2x,好了,变一变,原方程就化成了
cos2x-cosx-1-a=0 ①
如果原方程中 x有实根,则cosx就会有对应的实数,令t= cosx,这样方程①就化成了
t2-t-1-a=0 ②
因此,方程②就应该有实数根,因此它的判别式△=(-1)2-4(-1-a)=4a+5≥0,所以 a≥-(5/4)
故实数a的取值范围是a≥-(5/4)
这个答案对吗?
当a≥-(5/4)时,一定有△≥0,方程②一定有实数根,问题是cosx=t有实根x就一定有实数根吗?注意到余弦函数的值域是cosx∈[-1,1],故②有实根并不能保证cosx=t一定在[-1,1]内,可见上面的解答是不严密的,思维不缜密的同学可能就会在这里出错.这是试题设置的一个隐蔽的陷阱.
四、反思
怎么办呢?
如果能保证方程②的实数解t在区间[-1,1]内,则最简三角方程cosx=t就必有实数解x=2kπ±arccost,好,这样一来,问题就转化为当方程②有位于[-1,1]中的实数根时,求实数a的取值范围什么?
由方程②得:
故当a∈[-(5/4),1]∪[-(5/4),-1]=[-(5/4),1]时,原方程有关于x的实数根.
以上的方法用到了一元二次方程求根公式,用到了解两个无理不等式组成的不等式组,用到了集合的交集和并集.心里感觉踏实了,但运算较繁杂,有没有更好一些的方法?
五、改进
如果记方程②的左端为f(t),即
f(t)=t2-t-1-a
则方程②有[-1,1]中的实数解就等价于二次函数f(t)=t2-t-1-a 的图象抛物线在[-1,1]内与t轴有交点.数转化为形,以形助数.好,试试看.
当抛物线与t轴在[-1,1]内只有一个交点时,当且仅当
f(-1)f(1)≤0即
(1-a)(-1-a)≤0,解之,有 -1≤a≤1; ③
当抛物线与t轴在[-1,1]内有两个交点时,当且仅当
由③④得,当a∈[-1,1]∪[-(5/4),1]=[-(5/4),-1]时,y=f(t)与t轴在[-1,1]内有交点,方程②有实数解.
由于f(1)、f(-1),Δ等的计算比较简便,上述解法是不是比较简捷一点?
六、换个角度看问题
诗曰:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”我们前面的解题思路,都把注意力注意在了“方程有实根”上,跳不出“方程有实根”的如来佛手心,“五”中的解法就渗透了数形转换,已属巧解.如果换个角度看问题,将方程①移项变形得
a=cos2x-cosx-1
视a为x的函数,用逆向思维来思考:x有实数解,则有cosx ∈[-1,1],a=[cosx-(1/2)]2-(5/4)当cosx=(1/2)时有最小值a最小=-(5/4);当cos=-1时有最大值a最大=(9/4)-(5/4)=1,故函数值域为 a∈[-(5/4),1].反之,当a在[-(5/4),1]中取值时,cosx一定在[-1,1]中取值,x一定有实数解与之对应,你看,a的取值范围不是就求出来了吗?
七、变式
西游记中的孙悟空神通广大,能八九七十二变.好的数学题也会有一些“变式”.从上面的解法中你还能想到些什么?你能改编出一个相应的题目吗?试试看.
无独有偶,九年后的新千年第一年,2001年,北京市中学生数学竞赛高中一年能初赛试题“二、填空题”的最后一题即第8题如下:“8、若关于x的方程式sin2x+sinx+a=0 有实数解,求实数a的最大值与最小值的和”
读者诸君欣赏至此,是不是会“会心地笑了.”
八、启示
回顾以上解题过程,我们用到了方程的思想,等价转化的思想,数形结合转化的思想,变换角度看问题及逆向思维的思想.思想出智慧,智慧生妙解,妙解巧思令人陶醉.
是不是有某一种芦竹是可以吃的?
可以对玉米的某一条染色体DNA,或者是某一段100-300kb的DNA序列进行测序吗?
初一数学论文可以写有关黄金分割的生活应用吗?
我需要杀手不太冷的英文叙述,是描述这个电影,可以是某一情节具体分析,也可以人物分析~不是观后感哦~
初中的数学论文可以写一些什么内容、要怎么写?社会调查算是数学论文吗?
某一元醇在红热的铜丝催化下,最多可以被空气中的O2氧化成两种不同的醛,则此一元醇的化学式可能是.
转基因植物可能引起营养成分发生改变的根据是?A:部分DNA发生了重组 B:某一基因可以控制合成不同的蛋白质C:重组DNA
哈利波特 英语介绍,五百词就可以~可以介绍哈利波特~也可以是专门介绍某一部的~没有的话~要歌舞青春的也行~但是文章不要太
越少越好,不得超过70字!没事,说重点,或者把重点说出来我写也可以,另外,是数学论文,不是那样的作文
世界历史变迁下的中国撰写一篇历史小论文,可选择政治,经济,思想文化等不同角度,也可以选择某一时段,某一事件等展开论述.告
求《特洛伊》电影的英文台词(某一段也可以,全部的最好!)
用matlab画的三维图形一座山,想对某一高度以上的并且是在某个坐标范围内的表面染上不同的颜色