已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R). (1)若函数f(x)的最小值是f(-1)=0,且c=1,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 06:28:54
已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R). (1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=
已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)= (x+1)2(x>0)-(x+1)2(x<0).求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]恒成立,试求b的取值范围.
第一问以得出答案。主求第二问。详细一点 谢谢
已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)= (x+1)2(x>0)-(x+1)2(x<0).求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]恒成立,试求b的取值范围.
第一问以得出答案。主求第二问。详细一点 谢谢
∵c=1
f(x)=ax^2+bx+1
∵f(-1)=0
∴f ‘(x)=2ax+b
f ‘(-1)=-2a+b=0
f(-1)=a-b+1=0
解得a=-1/3 b=2/3
∴f(x)==-1/3x^2+2/3x+1
再问: 第二问啊,拜托了
再答: (2)a=1,c=0, f(x)=x^2+bx If(x)I≤1 -1≤ f(x)≤1 f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件: 对称轴在(0,1)...........................0< -b/2
f(x)=ax^2+bx+1
∵f(-1)=0
∴f ‘(x)=2ax+b
f ‘(-1)=-2a+b=0
f(-1)=a-b+1=0
解得a=-1/3 b=2/3
∴f(x)==-1/3x^2+2/3x+1
再问: 第二问啊,拜托了
再答: (2)a=1,c=0, f(x)=x^2+bx If(x)I≤1 -1≤ f(x)≤1 f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件: 对称轴在(0,1)...........................0< -b/2
已知函数f(x)=ax²+bx+c(a>0,b∈R,c∈R),若f(x)的最小值是f(-1)=0,且f(0)=
已知函f(x)=ax∧2+bx+c(a>.,b∈R,c∈R)若函数f(X)的最小值是f(-1)=0,f(0)=1且对称轴
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.
已知函数f(x)=ax²+bx+c(a>0,b属于R,c属于R).①若函数f(x)的最小值是f(-1)=0,且
已知函数f(x)=ax平方+bx+c(a>0,b∈R,c∈R)若函数f(x)的最小值是f(-1)=0,且c=1,求F(x
已知二次函数f(x)=ax2+bx+c,a、b、c∈R+,满足f(-1)=0,对于任意的实数
设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件 (1) 当x∈R时,f
已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1.
已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若函数f(x)在区间[-1,0]上是单调减函数,则a2+b2
已知函数f(x)=(bx+1)/(ax²+1)(a,b,c∈R)是奇函数,若f(x)的最小值是-1/2,且f(