设数列f(x)=log2^x-logx^4(0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:02:51
设数列f(x)=log2^x-logx^4(0
【求通项】
f(x) = log2^x - 2 /log2^x (且0<x<1)
∴ f(2^an) = log2^(2^an) - 2 /log2^(2^an) = an - 2/an = 2n
且0<2^an<1,即 an<0
化简得,(an)² - 2n*(an) - 2 = 0
△ = (2n)² - 4*1*(- 2) = 4(n² + 2)
∴ an = [ 2n ± √△ ] / 2
= n ± √(n² + 2)
而an<0,故舍去an = n + √(n² + 2)
∴通项公式为 an = n - √(n² + 2)
【判别{an}单调性】
a - a = n+1 - √[(n+1)² + 2] - n + √(n² + 2)
= 1 + √(n² + 2) - √(n² + 2n + 3)
∵ n²+2>n² ≥ 0,即√(n²+2) > √n² = |n|
而 n∈N,
∴ √(n²+2) > n
∴ 2√(n²+2) > 2n
两边同时加上 n²+3 得
n²+3 + 2√(n²+2) > n²+3 + 2n > 0
即,n²+ 2 + 2√(n²+2) +1 > n² + 2n + 3 > 0
两边同时开平方,得
1+ √(n²+2) > √(n² + 2n + 3)
所以有,
1 + √(n² + 2) - √(n² + 2n + 3) > 0
即,a > a (其中,n为任意正整数)
∴,数列{an}为单调递增数列
f(x) = log2^x - 2 /log2^x (且0<x<1)
∴ f(2^an) = log2^(2^an) - 2 /log2^(2^an) = an - 2/an = 2n
且0<2^an<1,即 an<0
化简得,(an)² - 2n*(an) - 2 = 0
△ = (2n)² - 4*1*(- 2) = 4(n² + 2)
∴ an = [ 2n ± √△ ] / 2
= n ± √(n² + 2)
而an<0,故舍去an = n + √(n² + 2)
∴通项公式为 an = n - √(n² + 2)
【判别{an}单调性】
a - a = n+1 - √[(n+1)² + 2] - n + √(n² + 2)
= 1 + √(n² + 2) - √(n² + 2n + 3)
∵ n²+2>n² ≥ 0,即√(n²+2) > √n² = |n|
而 n∈N,
∴ √(n²+2) > n
∴ 2√(n²+2) > 2n
两边同时加上 n²+3 得
n²+3 + 2√(n²+2) > n²+3 + 2n > 0
即,n²+ 2 + 2√(n²+2) +1 > n² + 2n + 3 > 0
两边同时开平方,得
1+ √(n²+2) > √(n² + 2n + 3)
所以有,
1 + √(n² + 2) - √(n² + 2n + 3) > 0
即,a > a (其中,n为任意正整数)
∴,数列{an}为单调递增数列
设函数f(x)=log2^x-logx^2(0
f(x)=log2(x)-logx(4)x ∈(0,1),又知数列an满足f(2an)=2n ,(n∈N*) 求数列an
设函数f(x)=log2 x-logx 4(0<x<1),数列{an}的通项an满足f(2∧an)=2n(n∈N*),
设函数f(x)=log2 x-logx 4(0<x<1),数列{an}的通项an满足f(2∧an)=2n(n∈N*),试
设函数f(x)=log2(x)-logx(2),数列{an}的通项满足f(2^an)=2n
设f(x)=a*(logx)^2+b*log2(x)+1(a,b为常数),当x>0时F(x)=f(x),且F(x)为R上
求y=log2 X+logx (2X)的值域
已知函数f(x)=log2(2^x +1/(2^x) ),设函数g(x)=log2(a*2^x -4/3a),其中a>0
20 设函数f(x)=log2(x+1)/(x-1)+log2(x-1)+log2(p-x).
求函数y=log2^x/2*logx^x/4,x属于[1,8]的最大值和最小值
logx^(x^2-x)=logx^2
设函数f(x)={2^x-1,x≤0 log2(x+1),x>0 如果f(x0)