已知圆O:(x2+y2=4)和点M(1,根号2),过点M作圆O的两条弦AC,BD互相垂直,求AC+BD得最大值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:06:18
已知圆O:(x2+y2=4)和点M(1,根号2),过点M作圆O的两条弦AC,BD互相垂直,求AC+BD得最大值
如图,作OE⊥AC、OF⊥BD,分别连接OB、OM、OC.
则:OE²=OC²-CE²,OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
则:OE²=OC²-CE²,OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
= =|||已知AC,BD为圆O:x²+y²=4的两条互相垂直的弦,AC,BD交于点M(1,√2),
已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,2),则四边形ABCD的面积的最大值为( )
如图,已知ac,bd是圆o的两条互相垂直的弦,并且ac,bd相交于点r,op垂直bc,oq垂直ad.
已知半径为2的圆的圆心在坐标原点,两条互相垂直的弦AC和BD相交于点M(1,根号2),求ABCD的面积的最大最小值!
已知正方形ABCD的对角线AC,BD相交于点O.E是AC上的一点,连结EB,过点A作AM垂直BE,垂足为M,AM交BD于
如图,AB是圆O的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE垂直于AC,垂足为点E
已知:在平行四边形ABCD中,AB=AD,∠ABC=120°,AC,BD交于点O,求证(1)AC垂直BD(2)AC=根号
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,若AC垂直于BD,试求四边形ABCD的面积
已知,如图,圆的两条弦AB,CD 互相垂直相交于点E,作EF垂直BD,延长EF交AC与G,求证:AG=AC
如图,在矩形ABCD中,已知对角线AC、BD交于O点.AM垂直BD于M,CN垂直BD于N,AB=2,AD=二倍根号三.试
四边形ABCD中,线段AC和BD互相垂直且相交于O.已知AC=4厘米,BD=5厘米,求四边形ABCD的面积.
圆的计算题目已知AC.BD为园O:X^2+Y^2=4的两条相互垂直的弦,垂足为点M(1,√2),则四边行ABCD面积的最