作业帮 > 数学 > 作业

设方程X²+2(1+a)X+(3a²)+(4ab+4b²+2)=0有实根

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 21:56:55
设方程X²+2(1+a)X+(3a²)+(4ab+4b²+2)=0有实根
设方程X²+2(1+a)X+(3a²)+(4ab+4b²+2)=0有实根
化简可以的X²+2(1+a)X+(a²+2a+1)+(2a²)-2a-1+(4ab+4b²+2)
=X²+2(1+a)X+(a+1)²+a²-2a+1 +a²+4ab+4b²
=(x+a+1)²+(a-1)²+(a+2b)²=0
可得a=1 b=-1/2 x=-2
△=4(a+1)²-4(3a²+4ab+4b²+2)≥0
化简可的(a+1)²-(3a²+4ab+4b²+2)≥0
a²+2a+1-3a²-4ab-4b²-2≥0
a²+a²+2a+1+4b²+4ab《=0
(a+1)²+(a+2b)²《=0
所以方程只有一个实数根 就是我上面的答案