设函数y=f(x)处处二阶可导,对每个x有f’’(x)>=0,且u=u(t)为任意的一个连续函数,证明下面不等式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:05:24
设函数y=f(x)处处二阶可导,对每个x有f’’(x)>=0,且u=u(t)为任意的一个连续函数,证明下面不等式
a a
(1/a) ∫ f[u(t)] dt>=f[(1/a) ∫ u(t)dt]
0 0
0 a 是积分的上下限
a a
(1/a) ∫ f[u(t)] dt>=f[(1/a) ∫ u(t)dt]
0 0
0 a 是积分的上下限
请看图片:
还有一种比较简洁的方法:利用函数的凸性和定积分的定义来证明,恕不另述.
还有一种比较简洁的方法:利用函数的凸性和定积分的定义来证明,恕不另述.
设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,
设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性
函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0
设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明
设f (x )定义在R上的函数,且对任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明:
设定义在R上的函数f(x),对任意x,y∈R,有f(x+y)=f(x)*f(y),且当x>0时,恒有f(x)>1.证明:
关于偏导数的一道题设函数z=f(u),其中u由方程u=φ(u)+∫ (上x下y) p(t)dt 确定为x,y的函数,且f
设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:
设f(x)在x=0处可导,且对任意x.y满足f(x+y)=f(x)f(y),证明f(x)处处可导,且
设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数f(x)对任意实数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)