作业帮 > 数学 > 作业

用柯西中值定理判定函数导数的正负求:设f(0)=0,f(x)在(0,+∞)上单调递增.证明:f(x)x在(0,+∞)上单

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:23:37
用柯西中值定理判定函数导数的正负求:设f(0)=0,f(x)在(0,+∞)上单调递增.证明:f(x)x在(0,+∞)上单调递增
用柯西中值定理判定函数导数的正负求:设f(0)=0,f(x)在(0,+∞)上单调递增.证明:f(x)x在(0,+∞)上单
根据已知条件f(0)=0,f(x)在(0,+∞)上单调递增
知:f(x)>=0,f‘(x)>=0
而[f(x)x]'=f'(x)x+f(x)>=0
故f(x)x在(0,+∞)上单调递增.
不知道要中值定理干什么,这几乎是显然的.