3、如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-3分之20,5),D是AB边上的一点,将三
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 03:05:02
3、如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-3分之20,5),D是AB边上的一点,将三角形ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是?
若反比例函数与AB交于M,于BC交于N,求S△MON
若反比例函数与AB交于M,于BC交于N,求S△MON
根据题意求得:|AO|=5, |AB|=20/3,
所以: 根据勾股定理求得|BO|=25/3,
根据角平分线定理求得|AD|=5/2
所以:D(-5/2,5)
直线OB的方程为:y=-(4/3)x
由于DE垂直OB,(由折叠知△AOD≌△EOD,所以∠DEO=90°)
所以可设直线DE的方程为y=(3/4)x+b,
将(-5/2,5)代入y=(3/4)x+b中求得b=55/8
所以:直线DE的方程为y=(3/4)x+(55/8)
解方程组y=(3/4)x+(55/8),y=-(4/3)x 得:x=-33/10, y=44/10
即E(-33/10 ,44/10)
设反比例函数解析式为:y=k/x
将E点坐标代入求得:k=-14.52
所以:反比例函数解析式为y=-14.52/x
对于y=-14.52/x来说,当y=5时,x=-2.904;当x=-20/3时,y=2.178
即M(-2.904,5), N(-20/3,2.178)
这样:
S五边形MNCOA可求,S△AMO和S△CON也可求,于是求出S△MNO.
所以: 根据勾股定理求得|BO|=25/3,
根据角平分线定理求得|AD|=5/2
所以:D(-5/2,5)
直线OB的方程为:y=-(4/3)x
由于DE垂直OB,(由折叠知△AOD≌△EOD,所以∠DEO=90°)
所以可设直线DE的方程为y=(3/4)x+b,
将(-5/2,5)代入y=(3/4)x+b中求得b=55/8
所以:直线DE的方程为y=(3/4)x+(55/8)
解方程组y=(3/4)x+(55/8),y=-(4/3)x 得:x=-33/10, y=44/10
即E(-33/10 ,44/10)
设反比例函数解析式为:y=k/x
将E点坐标代入求得:k=-14.52
所以:反比例函数解析式为y=-14.52/x
对于y=-14.52/x来说,当y=5时,x=-2.904;当x=-20/3时,y=2.178
即M(-2.904,5), N(-20/3,2.178)
这样:
S五边形MNCOA可求,S△AMO和S△CON也可求,于是求出S△MNO.
如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-20/3 ,5),D是AB边上的点,将△ADO
如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为(-20 /3 ,5),D是AB边上的一点.将△ADO
如图矩形AOCB的两边OC、OA分别位于x轴、y轴上
矩形ABCD的两边OC、OA分别位于Ox轴,Oy轴上,点B的坐标为B(负三分之二十,五),点D是AB边上的一点,
25.(本题12分)如图,矩形OABC的边OC、OA与x轴、y轴重合,点B的坐标是(根号3 、1),点D是AB边上一个动
如图,在直角坐标系中,矩形ABCD的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点
在平面直角坐标系中,O为坐标原点,矩形OABC的边OA、OC分别在X轴、Y轴上,点B的坐标(5,4),点E在AB上,将△
如图6 在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B在坐标为(1,3)将矩形沿AC翻折,
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=kx图象与BC交于点D
如图,将矩形OABC放入平面直角坐标系中使OA,Oc分别落在x轴y轴上连接OB已知0A=1,AB=2设过点B的双曲线为丨
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=k/x图像与BC交于
长方形OABC以点O为坐标原点,OA、OC分别在x轴、y轴上,点A (4,0),点C(0,5),D是BC边上任意一点,将