作业帮 > 数学 > 作业

四边形AEFG与ABCD都是正方形,它们的边长分别是a.b(b>2a)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 23:22:51
四边形AEFG与ABCD都是正方形,它们的边长分别是a.b(b>2a)
如图,四边形AEFG与ABCD都是正方形,他们的边长分别为a,b(b大于或等于2a),且点F在AD上(以下问题的结果可用a,b的代数式表示).
1,求S△DBF
2,把正方形AEFG绕点A按逆时针方向旋转45°得图二,求图中的S△DBF
3,把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值,最小值;如果不存在,请说明理由


如果回答完整 再加50分
四边形AEFG与ABCD都是正方形,它们的边长分别是a.b(b>2a)
1.S = DF * AB / 2 = (b - √2 * a) * b / 2
2.设AD,BF交点为H
EH / AH = EF / AB
所以EH = EF * AH / AB = EF * (AE - EH) / AB
EH = (EF * AE) / AB / (1 + EF/AB) = a * a / b / (1 + a / b) = a * a / (a + b)
S = DH * (EF + AB) / 2 = (b-a+ a*a/(a+b)) * (a + b) / 2 = b * b / 2
3.由于底边BD不变,所以S大小只取决于F点离BD的距离,由于A离BD距离为 b / √2,而AF距离为√2 * a
所以F距离BD最大为 b / √2 + √2 * a,最小为b / √2 - √2 * a
面积分别是√2 * b * 距离最大值(或最小值) / 2
这可是完全手打的啊.