求无穷积分是否收敛,为什么lim a→+∞ ∫_1^a_ 1/( (x^2)(1+x) ) dx=lim a→+∞ ∫_
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 16:36:35
求无穷积分是否收敛,为什么lim a→+∞ ∫_1^a_ 1/( (x^2)(1+x) ) dx=lim a→+∞ ∫_1^a_ ( (-1/x)+
求无穷积分是否收敛,为什么lim a→+∞ ∫_1^a_ 1/( (x^2)(1+x) ) dx=lim a→+∞ ∫_1^a_ ( (-1/x)+1/(x^2)+1/(1+x) ) dx
这一步是怎么想出来的?
求无穷积分是否收敛,为什么lim a→+∞ ∫_1^a_ 1/( (x^2)(1+x) ) dx=lim a→+∞ ∫_1^a_ ( (-1/x)+1/(x^2)+1/(1+x) ) dx
这一步是怎么想出来的?
lim(a→+∞) ∫(1→a) 1/[x²(1 + x)] dx
= lim(a→+∞) ∫(1→a) [x² - (x² - 1)]/[x²(1 + x)] dx
这步其实可用待定系数法解的,不过这个拆解也算简单,为了方便才做这个形式,熟练就想到了.
= lim(a→+∞) ∫(1→a) [1/(1 + x) - (x - 1)/x²] dx,分子(x² - 1) = (x + 1)(x - 1)与分母约掉(1 + x)
= lim(a→+∞) ∫(1→a) [1/(1 + x) - 1/x + 1/x²] dx,这样就可以求结果了
= lim(a→+∞) [ln((1 + x)/x) - 1/x] |[1→a]
= lim(a→+∞) [ln((1 + a)/a) - 1/a] - [ln((1 + 1)) - 1]
= lim(a→+∞) [ln(1/a + 1) - 1/a] - ln(2) + 1
= ln(0 + 1) - 0 - ln(2) + 1
= 1 - ln(2)
= ln(e/2)
定积分结果有具体面积,即为收敛.
用待定系数法的话:(除非题目特别要求,否则通常对于非常复杂的部分分式才真正有需要用到这个)
令1/[x²(1 + x)] = A/x² + B/x + C/(1 + x),通分得
1[x²(1 + x)] = [A(1 + x) + Bx(1 + x) + Cx²]/[x²(1 + x)],即
1 = A(1 + x) + Bx(1 + x) + Cx²
1 = A + Ax + Bx + Bx² + Cx²
1 = (B + C)x² + (A + B)x + A
{ A = 1
{ A + B = 0
{ B + C = 0
B = - A = - 1
C = - B = 1
所以1/[x²(1 + x)] = 1/x² - 1/x + 1/(1 + x)
很详细吧,谢谢☆⌒_⌒☆
= lim(a→+∞) ∫(1→a) [x² - (x² - 1)]/[x²(1 + x)] dx
这步其实可用待定系数法解的,不过这个拆解也算简单,为了方便才做这个形式,熟练就想到了.
= lim(a→+∞) ∫(1→a) [1/(1 + x) - (x - 1)/x²] dx,分子(x² - 1) = (x + 1)(x - 1)与分母约掉(1 + x)
= lim(a→+∞) ∫(1→a) [1/(1 + x) - 1/x + 1/x²] dx,这样就可以求结果了
= lim(a→+∞) [ln((1 + x)/x) - 1/x] |[1→a]
= lim(a→+∞) [ln((1 + a)/a) - 1/a] - [ln((1 + 1)) - 1]
= lim(a→+∞) [ln(1/a + 1) - 1/a] - ln(2) + 1
= ln(0 + 1) - 0 - ln(2) + 1
= 1 - ln(2)
= ln(e/2)
定积分结果有具体面积,即为收敛.
用待定系数法的话:(除非题目特别要求,否则通常对于非常复杂的部分分式才真正有需要用到这个)
令1/[x²(1 + x)] = A/x² + B/x + C/(1 + x),通分得
1[x²(1 + x)] = [A(1 + x) + Bx(1 + x) + Cx²]/[x²(1 + x)],即
1 = A(1 + x) + Bx(1 + x) + Cx²
1 = A + Ax + Bx + Bx² + Cx²
1 = (B + C)x² + (A + B)x + A
{ A = 1
{ A + B = 0
{ B + C = 0
B = - A = - 1
C = - B = 1
所以1/[x²(1 + x)] = 1/x² - 1/x + 1/(1 + x)
很详细吧,谢谢☆⌒_⌒☆
一道无穷积分习题设函数f(x)∈C[0,+∞),无穷积分∫(从0到+∞)f(x)dx绝对收敛,证明:lim(h→0+)∫
求lim(0~正无穷)∫(0~∞)(arctanx)^2/(X^2+1)^1/2dx
利用定积分中值定理(a是常数), 可得n→+∞时lim∫(n→n+a)xsin(1/x)dx=?
求 lim n→∞ ∫[1,0]x^n*dx/(1+x^(1/2)+x) 说是按定积分的定义或性质求,怎么求呢?
下列无穷积分收敛的是 A ∫sinx dx B ∫e^-2x dx C ∫1/x dx D∫1/√x dx
lim(x→∞)[(a x^2)/x+1]+bx=lim(x→∞)(a x^2)+bx(x+1) / x+1=lim(x
欧拉积分∫(0到正无穷)x^(a-1)*e^(-x^2)dx的收敛域为
求广义积分 ∫ (1→正无穷)dx/x(x^2+1),希望能把最后一步写详细点就是算lim(b→无穷)Inb/(b^2+
已知lim(x→正无穷) (3x-根号(ax^2-x+1))=1/6,求a的值
x→+∞,lim(1+a/x)^x=?
如果f(x)在[a,无穷)上单减,在[a,无穷)上的积分:(积分号)f(x)dx收敛,证明x趋向于无穷时lim xf(x
证明lim(a趋于正无穷)∫(cosx/x)dx=0;上界为2a,下界为a.