作业帮 > 综合 > 作业

曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 03:28:25
曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围
有两个交点是不是可以认为有两个相同交点?求详尽解析
曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围
有两个交点不可以认为有两个相同交点,有两个交点就是指有两个不同交点.
曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围.
【解】:
y=1-√(4-x^2) ,-2≤x≤2,y≤1 .
可知y=1-√(4-x^2) 图象是圆C;x^2+(y-1)^2=4被直线L:y=1所截的下半部分.C与L交点A(-2,1).B(2,1) ,画出二者图像.
直线y=k(x-4)+3过定点M(4,3),
当直线过点M(4,3)和点A(2,1)时,斜率最小,kmin=(3-1)/(4-2)=1,
直线y=k(x-4)+3与半圆相切时,
圆心(0,1)到直线y=k(x-4)+3距离d=2,
|2-4k|/√(1+k^2)=2,k=0或4/3 (k=0时,直线与圆的上半部分相切,舍去),
∴1≤k<4/3.