A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 09:03:26
A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵
设S=(I+AB)^(-1)*A,则S^(-1)=A^(-1)*(I+AB)=A^(-1)+B,因此(S^(-1))^T=(A^(-1)+B)^T=(A^(-1))^T+B^T=A^(-1)+B=S^(-1),即S^(-1)为可逆矩阵.
又S^(-1)*S=I,所以(S^(-1)*S)^T=I^T=I,即I=S^T*(S^(-1))^T=S^T*S^(-1),两边右乘S得:S=S^T,即S为对称矩阵,证明完毕.
又S^(-1)*S=I,所以(S^(-1)*S)^T=I^T=I,即I=S^T*(S^(-1))^T=S^T*S^(-1),两边右乘S得:S=S^T,即S为对称矩阵,证明完毕.
设A+B都是n阶对称矩阵,E+AB可逆,证明(E+AB)^-1A也是对称矩阵.(E+AB)的逆矩阵乘A
设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为
证明:A,B为n阶矩阵,I-AB可逆,则I-BA可逆
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵
设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆
设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA
设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.
矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换
设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.