实数x,y满足方程4x+3y-1=0,求x^2+y^2的最小值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 06:50:06
实数x,y满足方程4x+3y-1=0,求x^2+y^2的最小值
换一种思维方式:
假设d^2=x^2+y^2,也就是说所求式可以看成是直线4x+3y-1=0的任意一点到左边原点的距离的平方.
要求d^2=x^2+y^2的最小值,所以必有过原点的直线k1与直线k2:4x+3y-1=0垂直.
容易知道k2的斜率=-4/3,所以k1的斜率为3/4,方程可设为:y=3/4x,与4x+3y-1=0连立方程,可以求出垂足坐标为(4/25,3/25).
所以:d^2=(4/25)^2+(3/25)^2
=1/25.
假设d^2=x^2+y^2,也就是说所求式可以看成是直线4x+3y-1=0的任意一点到左边原点的距离的平方.
要求d^2=x^2+y^2的最小值,所以必有过原点的直线k1与直线k2:4x+3y-1=0垂直.
容易知道k2的斜率=-4/3,所以k1的斜率为3/4,方程可设为:y=3/4x,与4x+3y-1=0连立方程,可以求出垂足坐标为(4/25,3/25).
所以:d^2=(4/25)^2+(3/25)^2
=1/25.
已知实数x,y满足方程x^2+y^2-4x+1=0,(1)求,Y/x的最大值和最小值 (2)求y-x
已知实数xy满足方程x^2+y^2-4x+1=0求y比x的最小值
已知实数x,y满足方程x^2+y^2-4x-2y+1=0.求x^2+y^2+x+y的最大值和最小值.
与圆有关的最值问题 已知实数x y满足方程x^2+y^2-4x+1=0 求x-y的最大值 最小值.
已知实数x,y满足方程3x+4y-10=0,求x方+y方的最小值
已知实数x、y满足方程x^2+y^2-4x+1=0 1)求(y+2)/(x+1)的最大值和最小值.
已知实数x.y满足方程X^2+y^2-4x+1=0,求X^2+y^2的最大值和最小值
已知实数x、y满足方程x^2+y^2-4x+1=0,求y/x的最大值和最小值
已知实数X,Y满足4X+3Y-10=0,求x^2+y^2的最小值
1,若实数x,y满足x^2+y^2-2x+4y=0求y+3/x-4的最大值于最小值
已知实数x,y满足方程x的平方+y的平方-4x+1=0 (1)求y/x的最大值和最小值 (2)求y-x的最大值和最小值
已知实数x,y满足方程x^2+y^2-4x+1=0(1)求y/x的最大值和最小值(2)求x^2+y^2的最大值和最小值