作业帮 > 数学 > 作业

求拉普拉斯变换e∧(-2s)÷[s×(s+2)∧2]的原函数……要有步骤,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:22:36
求拉普拉斯变换e∧(-2s)÷[s×(s+2)∧2]的原函数……要有步骤,
求拉普拉斯变换e∧(-2s)÷[s×(s+2)∧2]的原函数……要有步骤,
设1/[s(s+2)^2]=a/s+b/(s+2)+c/(s+2)^2
去分母:1=a(s+2)^2+bs(s+2)+cs
1=s^2(a+b)+s(4a+2b+c)+4a
对比系数:1=4a, 4a+2b+c=0, a+b=0
解得:a=1/4, b=-1/4, c=-1/2
因此e^(2s)/[s(s+2)^2]=e^(-2s)[0.25/s-0.25/(s+2)-0.5/(s+2)^2]
反变换得原函数f(t)=[0.25-0.25e^(-2(t-2))-0.5(t-2)e^(-2(t-2))]*1(t-2)
再问: e^(-2s)只在最后考虑影响结果么
再答: 这是时域平移项,只在最后面将时间t平移一下而已。