0,1,1,2,3,5,8,13.即f(1)=0 ,f(2)=1,f(n+1)=f(n)+f(n-1)的通项公式和第推过
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:15:02
0,1,1,2,3,5,8,13.即f(1)=0 ,f(2)=1,f(n+1)=f(n)+f(n-1)的通项公式和第推过程,谢谢前辈
先辈们加油呀!!!!!!!!
先辈们加油呀!!!!!!!!
这个问题已经在网络上被问了很多很多次了.所以我就不再单独打字给你,而把现成的回答送给你,可以吧.
请参见:
----------------
裴波那契数列:1,1,2,3,5,8,13,...
裴波那契数列递推公式:F(n+2) = F(n+1) + F(n)
F(1)=F(2)=1.
它的通项求解如下:
F(n+2) = F(n+1) + F(n) => F(n+2) - F(n+1) - F(n) = 0
令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))
展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0
显然 a+b=1 ab=-1
由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根
解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2
令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即
F(n+1) - aF(n) = G(n) = b^n --------(1)
在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:
F(n+1) - xF(n) = y^n
F(n+1) - yF(n) = x^n
以上两式相减得:
(x-y)F(n) = x^n - y^n
F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
-----------------------------------
你的这个问题,和上面这个现成的回答有个小小的区别.即,你给出的数列是从0开始的.而 上面的回答中,数列是从1 开始的.
这没关系,只需要把上面通项公式中的 n 换成 n-1 就可以了.
请参见:
----------------
裴波那契数列:1,1,2,3,5,8,13,...
裴波那契数列递推公式:F(n+2) = F(n+1) + F(n)
F(1)=F(2)=1.
它的通项求解如下:
F(n+2) = F(n+1) + F(n) => F(n+2) - F(n+1) - F(n) = 0
令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))
展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0
显然 a+b=1 ab=-1
由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根
解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2
令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即
F(n+1) - aF(n) = G(n) = b^n --------(1)
在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:
F(n+1) - xF(n) = y^n
F(n+1) - yF(n) = x^n
以上两式相减得:
(x-y)F(n) = x^n - y^n
F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
-----------------------------------
你的这个问题,和上面这个现成的回答有个小小的区别.即,你给出的数列是从0开始的.而 上面的回答中,数列是从1 开始的.
这没关系,只需要把上面通项公式中的 n 换成 n-1 就可以了.
已知递推公式f(n)=(n-1)(n-2)[f(n-2)+f(n-3)+(n-3)*f(n-4)] (n>4)求通项公式
f(f(n))=3n,求f(1),f(2),f(3).
数列{F(n)}的递推公式为:F(n+1)F(n-1)=F(n)^2+1,前两项为:F(1)=1,F(2)=2.求通项公
f(n+1)=2f(n)/f(n)+2,f(1)=1,猜想f(n)的表达式
设f(n)=n+f(1)+f(2)+f(3)+……+f(n-1),用数学归纳法证明“n+f(1)+f(2)+f(3)+…
设f(x)=1/(2^x+√2),计算f(0)+f(1),f(-1)+f(-2)的值,猜想f(-n)+f(n+1)=
f(n)=1-2^(-2n),证明f(1)f(2)f(3).f(n)>1/2.
已知对于任意的自然数n,都有f(n+1)+f(n-1)=2f(n),其中f(0)≠0,f(1)=1
设f(x)=1/((2^x)+根号2),用推导等差数列前n项和公式的方法,求f(-5)+f(-4)+...+f(5)+f
设f(x)=1/3^x+根号3,类比推到等差数列前n项和的方法,求f(-12)+f(-11)+ 省略号 +f(12)+f
f(x)=1/(4x+2),求f(0)+f(1/n)+f(2/n)+……+f(n—2/n)+f(n—1/n)+f(1)的
若f(n)=sin(n兀/6) 试求 f(1)+f(2)+f(3)+……f(2006) 和f(1)x f(3)xf(7)