泰勒公式,为什么要找(X—Xo)的多项式来接近f(x)?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:08:44
泰勒公式,为什么要找(X—Xo)的多项式来接近f(x)?
为什么不能找别的?这里(X—Xo)有特别含义吗?
我想提问的重点是“(X-Xo)”而不是“多项式”,为什么找(X-Xo)?原提问这么长的问题误导大家了^_^||
为什么不能找别的?这里(X—Xo)有特别含义吗?
我想提问的重点是“(X-Xo)”而不是“多项式”,为什么找(X-Xo)?原提问这么长的问题误导大家了^_^||
泰勒公式是由拉格朗日中值定理为基础推导出来的,拉格朗日中值定理如下:
如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a).在这里区间[a,b],我们可以换成具有一般性的,把区间定义为[Xo,X],即把a变为X0,b变为X,上式就变为f'(ξ)*(X-X0)=f(X)-f(X0).移式得f(X)=f(X0)+f'(ξ)*(X-X0).呵,是否有点接近了.我们一般应用,可以近似地表示在点x0用f(X0)+f('X0)(X-X0)逼近函数f(x),但是近似程度不够,就是要用更高次去逼近函数,当然还要满足误差是高阶无穷小,就得到泰勒公式了.呵,我自己的理解啊.
如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a).在这里区间[a,b],我们可以换成具有一般性的,把区间定义为[Xo,X],即把a变为X0,b变为X,上式就变为f'(ξ)*(X-X0)=f(X)-f(X0).移式得f(X)=f(X0)+f'(ξ)*(X-X0).呵,是否有点接近了.我们一般应用,可以近似地表示在点x0用f(X0)+f('X0)(X-X0)逼近函数f(x),但是近似程度不够,就是要用更高次去逼近函数,当然还要满足误差是高阶无穷小,就得到泰勒公式了.呵,我自己的理解啊.
泰勒公式为什么是关于(X-X0)的多项式?
泰勒公式误差问题.在推导泰勒公式时有误差R(X)=F(X)-F(Xo)-F'(Xo)(X-Xo)由此可得R(X)=F''
泰勒公式证明就Pn(Xo) = f(Xo) 能懂,后面的为什么Pn'(Xo) = f'(Xo)?Pn''(Xo) = f
关于泰勒公式的解释,我都迷糊了,越想越乱.为什么要用f(x)的值以及各阶导数的值等于n次多项式的值及各阶导数的值来确定系
泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于
泰勒公式 在推导泰勒公式的时候,为什么把要找的多项式设为Pn(x)=a0+a1(x-x0)+a2(x-x0)^2+…+a
泰勒公式 证明泰勒中值定理是说函数f(x)等于n次多项式Pn(x)(就是f(x)的n阶泰勒公式)与Rn(x)(f(x)的
为什么泰勒公式中F(x)可以用N次多项式表示,而不用其它的形式
泰勒公式推导的思路为什么误差部分Rn(x)的表达式里要用(x-x0)^n+1,这个怎么来的?书上说是Rn(x)=f(x)
关于泰勒公式的,为什么我总是弄不懂前面那些多项式也就是Pn(x)的i阶导数啊?不知道是怎么求出来的
求函数f(x)=根号下x 按(x—4)的幂展开的带有拉格朗日型余项的3阶泰勒公式.泰勒
大学数学,微积分,泰勒公式的运用原则?搞不懂什么时候用题目中的数字带进X,什么时候带进Xo?