已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:46:44
已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系.
(1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
(2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
(3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明.
(1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
(2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
(3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明.
(1)AE=EF;
证明:如图1,过点E作EH∥AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠D=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
在△AEH和△FEC中,
∵
∠EAH=∠EFC
∠AHE=∠FCE
EH=EC,
∴△AEH≌△FEC,
∴AE=EF;
(2)猜想:(1)中的结论是没有发生变化.
证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC,
∴∠BAC=∠ACB
∴∠CHE=∠ACB,
∴EH=EC
∵AD∥BC,
∴∠D+∠DCB=180°.
∵∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论发生变化.
证明:如图3,过点E作EH∥AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∵AD∥BC,∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH∥AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
证明:如图1,过点E作EH∥AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠D=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
在△AEH和△FEC中,
∵
∠EAH=∠EFC
∠AHE=∠FCE
EH=EC,
∴△AEH≌△FEC,
∴AE=EF;
(2)猜想:(1)中的结论是没有发生变化.
证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC,
∴∠BAC=∠ACB
∴∠CHE=∠ACB,
∴EH=EC
∵AD∥BC,
∴∠D+∠DCB=180°.
∵∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论发生变化.
证明:如图3,过点E作EH∥AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∵AD∥BC,∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH∥AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
在四边形ABCD中,AD‖BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,AB=kAC.试证明A
四边形ABCD中,AB=BC,∠ABC=90°,点E在BD上,点F在射线CD上,且AE=EF,∠AEF=90°
如图,在四边形ABCD中,点E,F分别在BC和CD 上,且AB=AE=AF=AD=BC=CD=EF,则∠C的度数
在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF平行BC,交AD于点F.求证:四边形CDE
已知△ABC为等边三角形,点D、E、分别在AB,BC上,AD=BE,AE和CD相交于F,说明∠BAE=∠ACD
如图在△ABC中,AB=CB∠BAC=9∠C=60°,点D,E分别在边BC,AC上,且AE=CD,AD与BE相交于点F
如图所示,已知四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC、AD边上,且AF=CE,EF和对角线BD相交
如图,在菱形ABCD中,E.F分别在BC.CD上,且△AEF是等边三角形,AE=AB,则∠BAD的
四边形ABCD中,AD//BC,点E在CD上,AE和BE分别平分∠DAB和∠ABC.求证:AB=AD+BC
已知△ABC中,∠A=90°,AB=AC,点D、E、F分别在边AB,AC,BC上,且AD=AE,CD为EF的中垂线,求证
已知:如图,在四边形ABCD中,AD//BC,∠B=∠C..点E、F、G分别在边AB、BC、CD上,AE=GF=GC.
如图 菱形ABCD中 E F分别在BC CD上 △AEF是等边三角形 且AB=AE 求∠C?