已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 22:55:37
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)定点A(4,2),B,C为E上的两个动点,若直线AB与直线AC垂直,求证:直线BC恒过定点.
(Ⅰ)求E的方程;
(Ⅱ)定点A(4,2),B,C为E上的两个动点,若直线AB与直线AC垂直,求证:直线BC恒过定点.
(Ⅰ)由题意动圆P与直线y=-1相切,且与定圆M:x2+(y-2)2=1外切,
所以动点P到M(0,2)的距离与到直线y=-2的距离相等,
由抛物线的定义知,点P的轨迹是以C(0,2)为焦点,直线y=-2为准线的抛物线,
故所求P的轨迹方程为:x2=8y. …(4分)
(Ⅱ)证明:设直线BC:y=kx+b,B(x1,y1),C(x2,y2),
将直线BC代入到x2=8y中得x2-8kx-8b=0,
所以x1+x2=8k,x1x2=-8b,…(6分)
又因为
AB=(x1-4,y1-2),
AC=(x2-4,y2-2),
所以
AB•
AC=(x1-4,y1-2)•(x2-4,y2-2)=(k2+1)x1x2+[k(b-2)-4](x1+x2)+(b-2)2+16=0
所以-8b(k2+1)x+8k[k(b-2)-4]+(b-2)2+16=0
所以(b-6)2-16(k+1)2=0…(8分)
所以b=4k+10或b=-4k+2 …(10分)
所以恒过定点(-4,10). …(12分)
所以动点P到M(0,2)的距离与到直线y=-2的距离相等,
由抛物线的定义知,点P的轨迹是以C(0,2)为焦点,直线y=-2为准线的抛物线,
故所求P的轨迹方程为:x2=8y. …(4分)
(Ⅱ)证明:设直线BC:y=kx+b,B(x1,y1),C(x2,y2),
将直线BC代入到x2=8y中得x2-8kx-8b=0,
所以x1+x2=8k,x1x2=-8b,…(6分)
又因为
AB=(x1-4,y1-2),
AC=(x2-4,y2-2),
所以
AB•
AC=(x1-4,y1-2)•(x2-4,y2-2)=(k2+1)x1x2+[k(b-2)-4](x1+x2)+(b-2)2+16=0
所以-8b(k2+1)x+8k[k(b-2)-4]+(b-2)2+16=0
所以(b-6)2-16(k+1)2=0…(8分)
所以b=4k+10或b=-4k+2 …(10分)
所以恒过定点(-4,10). …(12分)
已知直线L:y=-1及圆C:x2+(y-2)2=1,若动圆M与L相切且与圆C外切,则动圆圆心M的轨迹方程为______.
已知圆A:(x+2)^2+y^2=1与定直线l:x=1,且动圆P和圆A外切并与直线l相切,求动圆圆心P的轨迹方程.
已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.
已知动圆M与直线y=3相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.
已知直线L:Y=-1及圆C:X^+(Y-2)^=1,动圆M与L相切且与圆C外切,则动圆圆心M的轨迹方程是?
己知直线l:y=-1和圆c=x^2+(y-2)^2=1,动圆m与l相切且与圆c外切则动圆圆心m的轨迹方程为?
已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程
已知动圆P与圆O1:x2-4x+y2+3=0外切,与直线l:x=-1相切,动圆圆心P的轨迹为曲线C.
已知动圆M过定点P(1.0),且与定直线L:x=0-1相切,求动圆圆心M的轨迹方程.
1、 求与直线L:x=-1相切,且与圆C:(x-2)的平方+y的平方=1相外切的动圆圆心p的轨迹方程.
若动圆P与定圆C:(x+3)^2+y^2=1相外切,且与直线l:x=2相切,求动圆圆心P的轨迹方程
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率