作业帮 > 数学 > 作业

已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 22:55:37
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)定点A(4,2),B,C为E上的两个动点,若直线AB与直线AC垂直,求证:直线BC恒过定点.
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(Ⅰ)由题意动圆P与直线y=-1相切,且与定圆M:x2+(y-2)2=1外切,
所以动点P到M(0,2)的距离与到直线y=-2的距离相等,
由抛物线的定义知,点P的轨迹是以C(0,2)为焦点,直线y=-2为准线的抛物线,
故所求P的轨迹方程为:x2=8y.           …(4分)
(Ⅱ)证明:设直线BC:y=kx+b,B(x1,y1),C(x2,y2),
将直线BC代入到x2=8y中得x2-8kx-8b=0,
所以x1+x2=8k,x1x2=-8b,…(6分)
又因为

AB=(x1-4,y1-2),

AC=(x2-4,y2-2),
所以

AB•

AC=(x1-4,y1-2)•(x2-4,y2-2)=(k2+1)x1x2+[k(b-2)-4](x1+x2)+(b-2)2+16=0
所以-8b(k2+1)x+8k[k(b-2)-4]+(b-2)2+16=0
所以(b-6)2-16(k+1)2=0…(8分)
所以b=4k+10或b=-4k+2           …(10分)
所以恒过定点(-4,10).                         …(12分)