已知椭圆x²/a²+y²/b²=1(a>b>0)的左右焦点分别为F1,F2,离心
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:11:32
已知椭圆x²/a²+y²/b²=1(a>b>0)的左右焦点分别为F1,F2,离心率e=√2/2,右准
直线L与该椭圆交与M.N两点,且│向量F2M+向量F2N│=2√26/3,求直线L的方程
直线L与该椭圆交与M.N两点,且│向量F2M+向量F2N│=2√26/3,求直线L的方程
a=√2
F1M+F2M=2a=2√2
F1N+F2N=2a=2√2
所以MN=F1M+F1N=2√2+2√2-2√26/3=4√2-2√26/3
c²=a²-b²=1
F1(-1,0)
所以是y-0=k(x+1)
y=kx+k
代入x^2+2y^2=2
(2k^2+1)x^2+4k^2x+(2k^2-2)=0
x1+x2=-4k^2/(2k^2+1)
x1x2=(2k^2-2)/(2k^2+1)
(x1-x2)^2=(x1+x2)^2-4x1x2=(8k^2+8)/(2k^2+1)^2
y=kx+k
(y1-y2)^2=(kx1-kx2)^2=k^2(x1-x2)^2=(8k^4+8k^2)/(2k^2+1)^2
MN^2=(x1-x2)^2+(y1-y2)^2
=(8k^4+16k^2+8)/(2k^2+1)^2
=8(k^2+1)^2/(2k^2+1)^2=(4√2-2√26/3)^2
2√2(k^2+1)/(2k^2+1)=4√2-2√26/3
(k^2+1)/(2k^2+1)=2-√13/3
(2k^2+2)/(2k^2+1)=4-2√13/3
1+1/(2k^2+1)=4-2√13/3
2k^2+1=3/(9-2√13)
解出k即可
F1M+F2M=2a=2√2
F1N+F2N=2a=2√2
所以MN=F1M+F1N=2√2+2√2-2√26/3=4√2-2√26/3
c²=a²-b²=1
F1(-1,0)
所以是y-0=k(x+1)
y=kx+k
代入x^2+2y^2=2
(2k^2+1)x^2+4k^2x+(2k^2-2)=0
x1+x2=-4k^2/(2k^2+1)
x1x2=(2k^2-2)/(2k^2+1)
(x1-x2)^2=(x1+x2)^2-4x1x2=(8k^2+8)/(2k^2+1)^2
y=kx+k
(y1-y2)^2=(kx1-kx2)^2=k^2(x1-x2)^2=(8k^4+8k^2)/(2k^2+1)^2
MN^2=(x1-x2)^2+(y1-y2)^2
=(8k^4+16k^2+8)/(2k^2+1)^2
=8(k^2+1)^2/(2k^2+1)^2=(4√2-2√26/3)^2
2√2(k^2+1)/(2k^2+1)=4√2-2√26/3
(k^2+1)/(2k^2+1)=2-√13/3
(2k^2+2)/(2k^2+1)=4-2√13/3
1+1/(2k^2+1)=4-2√13/3
2k^2+1=3/(9-2√13)
解出k即可
已知椭圆C:X²/a²+Y²/b²=1(a>b>0)的两个焦点为F1,F2,点P
已知双曲线x²/a²-y²/b²=1的左右焦点分别为F1,F2 点P在双曲线的右
椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为2分之根号3,过右焦点
高中圆锥曲线练习6.设椭圆(x²/a²)+(y²/b²)=1(a>b>0)的离心
椭圆x²/a²+y²/b²=1的左焦点F1(-c,0)A(-a,0)B(0,b)
设双曲线y²/a²-x²/3=1的两个焦点分别为F1、F2,离心率为2.
已知椭圆X²/16+Y²/9=1的左右焦点分别为F1 F2,点P在椭圆上,若角F1PF2=90°,求
椭圆C:x²/a²+y²/b²=1(a>b>0)的两个焦点为F1F2,点P在椭圆
已知F1,F2是椭圆x²/100+y²/b²的两焦点,P为椭圆上一点,求PF1×PF2的最
椭圆方程与圆的方程椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为3/
已知F1,F2为椭圆x²/16+y²/9=1的两个焦点,过F1的直线交椭圆于A,B两点,若△ABF2
已知椭圆x²/45+y²/20=1的焦点分别是F1.F2,过中心O作直线与椭圆相交于A.B两点,△A