作业帮 > 数学 > 作业

已知a,b,c∈R,f(x)=ax²+bx+c,g(x)=ax+b,当x∈[-1,1]时,f(x)的绝对值≤1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:33:12
已知a,b,c∈R,f(x)=ax²+bx+c,g(x)=ax+b,当x∈[-1,1]时,f(x)的绝对值≤1,求证:c的绝对值≤1
还有求证:(2) x∈[-1,1]时,g(x)的绝对值≤2
(3) a>0,当x∈[-1,1]时,g(x)的最大值为2,求f(x).
已知a,b,c∈R,f(x)=ax²+bx+c,g(x)=ax+b,当x∈[-1,1]时,f(x)的绝对值≤1
(1)由题f(0)的绝对值≤1,即c的绝对值≤1
(2)由题f(1)的绝对值≤1,由题f(-1)的绝对值≤1,
即-1≤a+b+c≤1,-1≤a-b+c≤1,
即-1-c≤a+b≤1-c,-1+c≤b-a≤1+c
又有c的绝对值≤1
所以-2≤a+b≤2,-2≤b-a≤2
即-2≤g(-1)≤2,-2≤g(1)≤2
又x∈[-1,1]时,g(x)的绝对值的最大值为g(-1)或g(1)
所以x∈[-1,1]时,g(x)的绝对值≤2
(3)当g(1)=a+b=2,由-1≤a+b+c≤1,c=-1
因为当x∈[-1,1]时,f(x)的绝对值≤1,由图象,b=0
所以a=2
所以f(x)=2x²-1
当g(-1)=b-a=2,由-1≤a-b+c≤1,c=1
因为当x∈[-1,1]时,f(x)的绝对值≤1,由图象,不可能
综上,f(x)=2x²-1