1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:06:39
1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?
不能确定你的问题出在哪里,需要帮忙检查的话请追问附上过程.
以下是用洛必达的做法:
lim{x → 0} 1/(sin²(x))-1/x²
= lim{x → 0} (x²-sin²(x))/(x²sin²(x))
= (lim{x → 0} (x²-sin²(x))/x⁴)/(lim{x → 0} sin(x)/x)²
= lim{x → 0} (x²-sin²(x))/x⁴ (重要极限lim{x → 0} sin(x)/x = 1)
= lim{x → 0} (2x-2sin(x)cos(x))/(4x³) (0/0型,洛必达)
= lim{x → 0} (2-2cos²(x)+2sin²(x))/(12x²) (0/0型,洛必达)
= lim{x → 0} sin²(x)/(3x²)
= (lim{x → 0} sin(x)/x)²/3
= 1/3 (重要极限lim{x → 0} sin(x)/x = 1).
用Taylor展开也可以:
∵cos(t) = 1-t²/2+t⁴/24+o(t⁴),
∴sin²(x) = (1-cos(2x))/2 = (2x)²/4-(2x)⁴/48+o(x⁴) = x²-x⁴/3+o(x⁴),
∴x²-sin²(x) = x⁴/3+o(x⁴),即(x²-sin²(x))/x⁴ = 1/3+o(1) → 1/3.
再由上面已证lim{x → 0} 1/(sin²(x))-1/x² = lim{x → 0} (x²-sin²(x))/x⁴ = 1/3.
以下是用洛必达的做法:
lim{x → 0} 1/(sin²(x))-1/x²
= lim{x → 0} (x²-sin²(x))/(x²sin²(x))
= (lim{x → 0} (x²-sin²(x))/x⁴)/(lim{x → 0} sin(x)/x)²
= lim{x → 0} (x²-sin²(x))/x⁴ (重要极限lim{x → 0} sin(x)/x = 1)
= lim{x → 0} (2x-2sin(x)cos(x))/(4x³) (0/0型,洛必达)
= lim{x → 0} (2-2cos²(x)+2sin²(x))/(12x²) (0/0型,洛必达)
= lim{x → 0} sin²(x)/(3x²)
= (lim{x → 0} sin(x)/x)²/3
= 1/3 (重要极限lim{x → 0} sin(x)/x = 1).
用Taylor展开也可以:
∵cos(t) = 1-t²/2+t⁴/24+o(t⁴),
∴sin²(x) = (1-cos(2x))/2 = (2x)²/4-(2x)⁴/48+o(x⁴) = x²-x⁴/3+o(x⁴),
∴x²-sin²(x) = x⁴/3+o(x⁴),即(x²-sin²(x))/x⁴ = 1/3+o(1) → 1/3.
再由上面已证lim{x → 0} 1/(sin²(x))-1/x² = lim{x → 0} (x²-sin²(x))/x⁴ = 1/3.
1.lim(x趋于0时),x分之sinx .2.lim(x趋于1时),x分之sinx 那个能用洛必达法则?还是都不能?
用洛必塔法则 求极限lim x趋于0 e^(sinx)-e^x/sinx-x 这个极限为什么等于1呢?
lim(x-sinx)\ln(f(x)+3)=1\2 当x趋于0时,分子是趋于0的,那分母的极限是否等于0?
当x趋于0时,sinx-tanx/[](1+x^2)1/3-1][(√1+sinx)-1]的极限
x趋于0 时 sinx-tanx/(3√1+x∧2-1)(√1+sinx-1) 求极限
limx趋于0,ln(1-2x)/sinx,求极值
怎样求,当x趋于0时,lim{( tanx)^2/x}.已知的是:当x趋于0时,lim(sinx/x)=1,lim(1-
[(1+x)^1/x-(1+2x)^1/2x]/sinx,x趋于0时的极限怎么求?(答案是-e/2)
能帮我解这题吗?,当x趋于0时,无穷小量x-sinx/x的1/2次方是x的多少阶无穷小量.需要具体步骤.
当x趋于0时,(sinx^3)tanx/1-(cosx^2)的极限
lim(x趋于0)根号(1+x^2) - 1 / x 可以用洛必达法则么?
用罗比塔法则求极限极限趋于0(e^x-1)/(x^2-x)