如图所示,四边形ABCD内接于圆O,AD是圆O的直径,AD=4,AB=BC=1,延长DC,AB交于E.【1】求证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/24 00:01:49
如图所示,四边形ABCD内接于圆O,AD是圆O的直径,AD=4,AB=BC=1,延长DC,AB交于E.【1】求证
如图所示,四边形ABCD内接于圆O,AD是圆O的直径,AD=4,AB=BC=1,延长DC,AB交于E.【1】求证:△BCE∽△DAE.【2】求CD的长
如图所示,四边形ABCD内接于圆O,AD是圆O的直径,AD=4,AB=BC=1,延长DC,AB交于E.【1】求证:△BCE∽△DAE.【2】求CD的长
(1)证明:因为角BCE=角DAE
角E=角E
所以三角形BCE和三角形DAE相似(AA)
因为三角形BCE和三角形DAE相似(已证)
所以BC/AD=BE/DE=CE/AE
因为AB=BC=1
AD=4
所以BE/CE=CE/AE=1/4
因为AD是圆O的直径
所以角ABD=90度
所以三角形ABD是直角三角形
由勾股定理得:
AB^2+BD^2=AD^2
所以BD=根号15
因为角ABD+角EBD=180度
所以角EBD=90度
所以三角形EBD是直角三角形
由勾股定理得:
BD^2+BE^2=DE^2
所以BE=1
DE=4
因为AE=AB+BE=1+1=2
所以CE=1/4AE=1/2
因为DE=CD+CE
所以CD=7/2
角E=角E
所以三角形BCE和三角形DAE相似(AA)
因为三角形BCE和三角形DAE相似(已证)
所以BC/AD=BE/DE=CE/AE
因为AB=BC=1
AD=4
所以BE/CE=CE/AE=1/4
因为AD是圆O的直径
所以角ABD=90度
所以三角形ABD是直角三角形
由勾股定理得:
AB^2+BD^2=AD^2
所以BD=根号15
因为角ABD+角EBD=180度
所以角EBD=90度
所以三角形EBD是直角三角形
由勾股定理得:
BD^2+BE^2=DE^2
所以BE=1
DE=4
因为AE=AB+BE=1+1=2
所以CE=1/4AE=1/2
因为DE=CD+CE
所以CD=7/2
如图三,AB是圆o的直径,DC切圆o于E,AD垂直于DC于D,BC垂直DC于C,CD=4,BC=1,则四边形ABCD的面
如图,四边形ABCD内接于圆O,并且AD是圆O的直径,C是弧BD的中点,AB和CD的延长线交圆O外一点E.求证:BC=E
如图,ABCD是圆O的内接四边形,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切圆O于P、Q.求证:E
四边形ABCD内接于圆O,AD平行BC,E是DA延长线上的一点,AB平方=AE*BC,BE与CA的延长线交于点F,求证B
延长四边形ABCD的对边AD,BC交于F;DC,AB交于E,若角AED,角AFB平分线交于O,求证:角EOF=1/2(角
如图 四边形ABCD内接于圆O ,AB,DC的延长线交于E,角AED的平分线分别交BC,AD于F,G 求证角GFC=角D
已知:四边形ABCD内接于圆O,AB与DC的延长线交于E点,AD与BC的延长线交于F点.求证:AE·BF=AF·DE
如图所示,AB是圆O的弦,D是弧AB的中点,连接AD并延长交AB的垂线于点C,E是BC上一点 求证,AD=DC
;四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB,DA交于P,过C点作PD的垂线交PD的延长线于
已知四边形ABCD内接于圆O,AC平分∠BAD,AB与DC的延长线交于点E,AC=CE.求AD=BE
如图所示,AD是圆O的直径,BC切圆O于点D,AB,AC与圆O相交于E.F,求证AE×AB=AF×AC
如图,AB是圆O的直径,BC是弦,延长BC到D,使CD=BC,CE切圆O于点C,交AD于E,求证:CE⊥AD.