平面内与两定点的距离之和为定值的点的轨迹是椭圆对吗?
平面内与两定点的距离之和为定值的点的轨迹是椭圆对吗?
(2007•长宁区一模)平面内“一个动点到两个定点距离之和为定值”是“动点轨迹为椭圆”的( )
三段论“平面内到两定点F1,F2的距离之和为定值的点的轨迹是椭圆(大前提),平面内动点M到两定点F1(-2,0)F2(2
平面内两定点的距离是8到这两定点的距离之和是8的点的轨迹是
椭圆定义中:平面内与两个定点 的距离之和等于常数(大于 )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点
到两定点距离之和为常数的点轨迹是椭圆
平面内到两个定点的距离之积为定值的点的轨迹
关于数学椭圆准线点M到两焦点的距离之和为定值的点的轨迹是椭圆还是点M到定点和定直线的距离比为定值的点的轨迹是椭圆这两个哪
续关于数学椭圆准线1.点M到两焦点的距离之和为定值的点的轨迹是椭圆2.点M到定点和定直线的距离比为定值的点的轨迹是椭圆刚
曲线C是平面内到定点A(1,0)的距离与到定直线x=-1的距离之和为3的动点P的轨迹,则曲线C与y轴交点的坐标是
平面内一动点M到两定点F1、F2的距离之和为常数2a,则点M的轨迹为( ) A椭圆 B圆 C无轨迹
到两定点距离之和为常数的点的轨迹是椭圆.这句话正确吗?为什么?