已知方向向量为e=(1,√3)的直线l过A(0,-2√3)和椭圆c:X^/A^+Y^/B^=1(a>b>0)的焦点 且椭
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:35:31
已知方向向量为e=(1,√3)的直线l过A(0,-2√3)和椭圆c:X^/A^+Y^/B^=1(a>b>0)的焦点 且椭圆c的中心关于直线l的对称点在椭圆c的右准线上
①求椭圆的方程
②是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足 ,
向量OM×向量ON=(4√6)/3cot∠MON(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
①求椭圆的方程
②是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足 ,
向量OM×向量ON=(4√6)/3cot∠MON(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
①直线l为:y+2√3=√3x,即:y=√3x-2√3
它只能过椭圆的右焦点(c,0)代入:c=2
椭圆的右准线为x=a^2/c,设椭圆c的中心关于直线l的对称点为P
P的横坐标为 a^2/c,直线OP:y=-√3/3x,于是P为(a^2/c,-√3a^2/(3c))
OP的中点(a^2/2c,-√3a^2/(6c))在l上:-√3a^2/(6c)=√3a^2/c-2√3
于是:a^2=6,b^2=2
椭圆的方程为x^2/6+y^2/3=1;
②设∠MON=θ,向量OM·向量ON=│OM││ON│cosθ=4√6/3cotθ
│OM││ON│sinθ=4√6/3=2S△MON
设直线MN为:ky=x+2,原点到MN的距离:d=2/√(1+k^2)
把直线代入椭圆:(3+k^2)y^2-4ky-2=0
y1+y2=4k/(3+k^2),y1y2=2/(3+k^2)
│MN│=√[(1+k^2)(y1-y2)^2=√(1+k^2)*√[(y1+y2)^2-4y1y2]
4√6/3=2S△MON=d*│MN│=√[(y1+y2)^2-4y1y2]
32/3=16k^2/(3+k^2)^2-8/(3+k^2),这个方程无实根,所以直线m不存在
备注:向量有两种乘法形式一种是点积(·)一种是叉积(×),点积是标量(数量),叉积是向量,题目中应该是点积.
它只能过椭圆的右焦点(c,0)代入:c=2
椭圆的右准线为x=a^2/c,设椭圆c的中心关于直线l的对称点为P
P的横坐标为 a^2/c,直线OP:y=-√3/3x,于是P为(a^2/c,-√3a^2/(3c))
OP的中点(a^2/2c,-√3a^2/(6c))在l上:-√3a^2/(6c)=√3a^2/c-2√3
于是:a^2=6,b^2=2
椭圆的方程为x^2/6+y^2/3=1;
②设∠MON=θ,向量OM·向量ON=│OM││ON│cosθ=4√6/3cotθ
│OM││ON│sinθ=4√6/3=2S△MON
设直线MN为:ky=x+2,原点到MN的距离:d=2/√(1+k^2)
把直线代入椭圆:(3+k^2)y^2-4ky-2=0
y1+y2=4k/(3+k^2),y1y2=2/(3+k^2)
│MN│=√[(1+k^2)(y1-y2)^2=√(1+k^2)*√[(y1+y2)^2-4y1y2]
4√6/3=2S△MON=d*│MN│=√[(y1+y2)^2-4y1y2]
32/3=16k^2/(3+k^2)^2-8/(3+k^2),这个方程无实根,所以直线m不存在
备注:向量有两种乘法形式一种是点积(·)一种是叉积(×),点积是标量(数量),叉积是向量,题目中应该是点积.
高中数学几何椭圆求解已知方向向量为V=(1,√3)的直线L过点(0,-2√3)和椭圆C:X^2/A^2+Y^2/B^2=
已知椭圆C:x*2/a*2+y*2/b*2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线与
已知抛物线C:y^2=2px的准线为l,过点M(1,0),且斜率为√3的直线与l相交于点A,与C的一个焦点为B,若向量A
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.
过椭圆C x^2/4b^2+y^2/b^2=1(b>0)右焦点F且斜率为k的直线与C相交与A、B两点,若向量AF=3向量
设F1,F2分别为椭圆E:x^/a^+y^/b^=1(a>b>0)的左、右焦点,过F1且斜率为1的直线L与E相交于A,B
已知椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的离心率为√3/3,过右焦点F的直线l与C相交于AB
已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若A
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(√3)/2,过右焦点F且斜率为k(k>0)的直线
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,过右焦点F的直线l与C相交与A、B两点