作业帮 > 数学 > 作业

正四棱锥何时体积最大底面面积一定 ,顶点为不定点原题是这样,有一正四棱锥,其侧面的棱长为2倍根3,其体积有最大值,问高为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:28:09
正四棱锥何时体积最大
底面面积一定 ,顶点为不定点
原题是这样,有一正四棱锥,其侧面的棱长为2倍根3,其体积有最大值,问高为多少 为什么只能用求导呢 我还没学
正四棱锥何时体积最大底面面积一定 ,顶点为不定点原题是这样,有一正四棱锥,其侧面的棱长为2倍根3,其体积有最大值,问高为
是正四棱锥,不是正三棱锥,目前还未找到简单方法.
设底正方形边长为2x,正四棱锥高为SH,H为底正方形对角线交点,
则对角线为2√2x,AH=√2x,
SH=√(SA^3-AH^2)=√(12-2x^2),
S正方形ABCD=4x^2,
VS-ABCD=[4x^2√(12-2x^2)]/3,
为求出函数极值,对函数求一阶导数,令其为0,求出驻点,
V'(x)=(8x/3)√(12-2x^2)+4x^2*(1/2)(12-2x^2)^(-1/2)(-4x)/3
=(8x/3)√(12-2x^2)-8x^3/√(12-2x^2)
=0,
x=±2,舍去负值,x=2,
当x