有关复变函数可去奇点,本性奇点的问题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 22:10:23
有关复变函数可去奇点,本性奇点的问题
当z趋于无穷时,(1-cosz)/z⁴=0?为可去奇点,为什么?当z趋于无穷时不是cosz没有确定值吗?那么它不是应该为本性奇点吗?
当z趋于无穷时,(1-cosz)/z⁴=0?为可去奇点,为什么?当z趋于无穷时不是cosz没有确定值吗?那么它不是应该为本性奇点吗?
令z=1/t,则原函数为(1-cos(1/t))t⁴,因此(1-cos(1/t))t⁴趋于0当t趋于零.也就是说t=0是函数(1-cos(1/t))t⁴的可去奇点.而对于z=无穷远点 孤立奇点类别的定义是针对 t=0 (t=1/z)作为函数孤立奇点的类别而定义的,也就是说如果经过代换后t=0是可去的,无穷远点就是可去的,t=0是极点,无穷远点就是极点,t=0是本性的,则无穷远点就是本性的.本题中t=0是可去的,则z=无穷远点就是可去的.
再问: 你这个转换之后当t趋于0那cos1/t不是没有确定值吗?因为我记得当z趋于无穷时,e的z次方,cosz,sinz都是没有确定值,无穷对于他们来说是本性奇点,这里只是下面多了个z⁴会有什么影响?
再答: 你说的是对的,我忽视掉这一点了,原函数的展开式有无穷多个正项,所以无穷大应该也还是本性的奇点。
再问: 你这个转换之后当t趋于0那cos1/t不是没有确定值吗?因为我记得当z趋于无穷时,e的z次方,cosz,sinz都是没有确定值,无穷对于他们来说是本性奇点,这里只是下面多了个z⁴会有什么影响?
再答: 你说的是对的,我忽视掉这一点了,原函数的展开式有无穷多个正项,所以无穷大应该也还是本性的奇点。
英语翻译可去奇点本性奇点可去奇点 是 removable singular point
求证复变函数里关于本性奇点的一个定理.
复变函数关于孤立奇点的问题,为什么这一题无穷远点为该函数的非孤立奇点
复变函数,奇点复变函数z/cosz的奇点
复变函数题,判断奇点z=1是(z-1)sin(1/(z-1))的可取奇点还是本性奇点?求极限看,是一个无穷小乘以有界量,
求奇点 ,在线等,请稍微解释下过程, z=1是函数(lnz)/(z∧2-1)的 A可去奇点 B极点 C本性极点 D非孤立
复变函数的奇点的定义是什么?
复变函数中 奇点 的概念,或者定义.
复变函数中的奇点是什么意思?
复变函数中,奇点是什么?
问个复变函数中关于奇点的问题.
复变函数中的奇点怎么读,qi还是ji?