作业帮 > 数学 > 作业

双曲线x2/a2-y2/b2的左右焦点是F1,F2,P为椭圆上一点,向量PF1垂直于向量PF2,三角形F1PF2面积为9

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 22:55:29
双曲线x2/a2-y2/b2的左右焦点是F1,F2,P为椭圆上一点,向量PF1垂直于向量PF2,三角形F1PF2面积为9,则b=?
双曲线x2/a2-y2/b2的左右焦点是F1,F2,P为椭圆上一点,向量PF1垂直于向量PF2,三角形F1PF2面积为9
△PF1F2叫“焦点三角形”
在双曲线中,焦点三角形的面积公式为S=b²/tan(θ/2),θ为顶角
此题中,很显然θ=π/2
∴b²/tan(π/4)=9
∴b=3
再问: 我们还没学焦点三角形面积耶..有没有别的方法啊
再答: 那就用向量,不过比较麻烦 焦点三角形不是课本内容,但是你一定要会,我们老师也是给我们选讲的,用这种方法很快。 S(椭圆)=b²·tan(θ/2) S(双曲线)=b²/tan(θ/2) θ为顶角 一个三角形,只要有两个顶点都是焦点,第三个顶点在曲线上,这就叫焦点三角形
再问: 那那个公式中的b2是固定的么? 不管角是多少度b2都不换变成c2、a2的么?
再答: 对,焦点三角形的面积只跟b和顶角θ有关,因为他是特殊位置的三角形,所以影响他的因素比较少.