设f(x)、g(x)在[a,b]上可微,g'(x)不等于0,若a
高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)
设函数f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a
设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y
设函数f(x),g(x)在(a,b)内可导对任意x∈(a,b)g(x)≠0,在(a,b)内f(x)g'(x)-f'(x)
设f(X)具有2阶连续导数,且f(a)=0,g(x)=f(x)/x-a,x不等于a,g(x)=f'(a),x=a,求g'
设函数f(x0=-1/x,g(x)=ax^2+bx(a.b属于R,a不等于0)若y=f(x)的图像与y=g(x)的图像有
已知函数f(x)=ax^2+2bx(a不等于0),g(x)=2Inx,设F(x)=f(x)-g(x),且F(x)在x=1
若f(x)和g(x)都是定义在(a,b]内,且f(x)为增函数,g(x)为减函数,且g(x)不等于0,则一定有
f(x)=e的x次方,g(x)=ax2+bx+1若a不等于0,则a,b满足什么条件,曲线y=f(x)与y=g(x)在x=
微分中值定理证明题设f(x),g(x)在[a,b]上可导,并且g’(x) ≠0,证明存在c ∈(a,b)使得 (f(a)
设函数f(x)=a^x+b (a>0)(a不等于1)g(x)=2x^2-5x-k函数f(x)的图象过点(1,7)且当f(
设f(x),g(x)在〔a,b]上可导,且F的导数大于G的导数,当a