已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG并
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:48:46
已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG并延长交AE于F,若∠FGE=45°.
(1)求证:BD•BC=BG•BE;
(2)求证:AG⊥BE;
(3)若E为AC的中点,求EF:FD的值.
(1)求证:BD•BC=BG•BE;
(2)求证:AG⊥BE;
(3)若E为AC的中点,求EF:FD的值.
分析:(1)根据题意,易证△GBD∽△CBE,得 BD/BE=BG/BC,即BD•BC=BG•BE;
(2)可通过证明ABG∽△EBA从而求得AG⊥BE;
(3)EF:FD=1:10.
证明:(1)∵∠BAC=90°,AB=AC
∴∠ABC=∠C=45°
∵∠BGD=∠FGE=45°
∴∠C=∠BGD
∵∠GBC=∠GBC
∴△GBD∽△CBE
∴ BD/BE=BG/BC
即BD•BC=BG•BE;
(2)∵BD•BC=BG•BE,∠C=45°,
∴BG= BD•BC/BE= 12BC•BC/BE= 1/2(√2AB)²/BE= AB²/BE,
∴ AB/BG= BE/AB,∠ABG=∠EBA
∴△ABG∽△EBA
∴∠BGA=∠BAE=90°
∴AG⊥BE;
(3)∵EF:AF=EG:AG=AE²:(EB•AG)= 1/2,EF= 1/3AE,DE= 1/2AB,DF= 10/3AE
∴EF:FD=1:√10.
再问: 第3题能详细点吗?不是很明白。
再答: ……………………这足够详细了吧,这么长。。。。 要么,你具体哪里不懂啊,我觉得连算式步骤都写了,是不是够了。。
再问: ∵EF:AF=EG:AG=AE²:(EB•AG)= 1/2,EF= 1/3AE,不懂。你觉得初二的能做吗?
(2)可通过证明ABG∽△EBA从而求得AG⊥BE;
(3)EF:FD=1:10.
证明:(1)∵∠BAC=90°,AB=AC
∴∠ABC=∠C=45°
∵∠BGD=∠FGE=45°
∴∠C=∠BGD
∵∠GBC=∠GBC
∴△GBD∽△CBE
∴ BD/BE=BG/BC
即BD•BC=BG•BE;
(2)∵BD•BC=BG•BE,∠C=45°,
∴BG= BD•BC/BE= 12BC•BC/BE= 1/2(√2AB)²/BE= AB²/BE,
∴ AB/BG= BE/AB,∠ABG=∠EBA
∴△ABG∽△EBA
∴∠BGA=∠BAE=90°
∴AG⊥BE;
(3)∵EF:AF=EG:AG=AE²:(EB•AG)= 1/2,EF= 1/3AE,DE= 1/2AB,DF= 10/3AE
∴EF:FD=1:√10.
再问: 第3题能详细点吗?不是很明白。
再答: ……………………这足够详细了吧,这么长。。。。 要么,你具体哪里不懂啊,我觉得连算式步骤都写了,是不是够了。。
再问: ∵EF:AF=EG:AG=AE²:(EB•AG)= 1/2,EF= 1/3AE,不懂。你觉得初二的能做吗?
已知,如图,在直角三角形ABC中,角BAC=90度,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG,
如图直角三角形ABC中,角BAC=90度,AB=AC,D为BC中点,E为AC上一点,点G在BE上,连接DG,并延长交AE
如图,在Rt△ABC中,∠BAC=90,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连结DG并延长交AC于
已知,如图,在直角三角形ABC中,角BAC=90度,AB=AC,D为BC的中点,E为AC上一点,AG⊥BE于G,延长DG
已知:如图,在直角三角形ABC中,∩BAC=90°,AB=AC,D为BC的中点,E为AC上一点,
难搞的数学题已知:在直角三角形ABC中,∠BAC=90度,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连结
在等腰直角三角形ABC中,角BAC=90度,D为BC的中点,E为AC上的一点,点G在BE上,连结DG并延长交AE于F,若
如图,直角三角形ABC中,角BAC=90度,AB=AC,D为BC中点,E为AC上一点,连结BE,AG⊥BE与G延长DG于
如图,在Rt三角形ABC中,角BAC=90度,AB=AC,D为BC的中点,E为AC上一点,点G在BE
相似直角三角形已知,直角三角形ABC中,角BAC=90度,AB=AC,D为BC上中点,E为AC上的点,点G在BE上,连结
如图,在Rt△ABC中,AB=AC,∠BAC=90°,D是BC的中点.(1)E,F分别为AB,AC上一点,且BE=AF,
如图,在△ABC中,∠BAC=90°,AB=AC,D为AC的中点,DE⊥BC于点E,连接AE,F为BC延长线上一点,若∠