作业帮 > 数学 > 作业

设f(x)为连续函数,且f(x)>0,x∈[a,b],F(x)=∫(上限x下限a)f(t)dt+∫(上限x下限a)1/f

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:18:16
设f(x)为连续函数,且f(x)>0,x∈[a,b],F(x)=∫(上限x下限a)f(t)dt+∫(上限x下限a)1/f(t)dt,x∈[a,b],证明方程F(x)=0在区间[a,b]上有且仅有一个根?
设f(x)为连续函数,且f(x)>0,x∈[a,b],F(x)=∫(上限x下限a)f(t)dt+∫(上限x下限a)1/f
证明如图: