积分综合题,急!f(x)在(0,1)连续且可导,f(1)=2积分[xf(x)]dx,求证,在(0,1)中存在一点a,使得
微积分不等式证明设f(x)在[0,1]上连续,且∫f(x)dx=0,∫xf(x)dx=1(两个积分都是在0-1上的积分)
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
f"(x)在[0,1]上连续,f'(1)=0,f(1)-f(0)=2,∫(0~1)xf"(x)dx=?(定积分)
(积分)设函数f在区间[0,1]上可微,且满足1/2f(1)=∫(1/2,0)xf(x)dx
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
函数f(x)zai [0,1]上连续,证明在区间0到π内,定积分xf(sinx)=定积分π/2f(sinx)
设函数在[0,1]上有连续导数,且∫(下0,上1)xf(x)dx=0,证明在[0,1]上至少存在一点c,使得c^2f'(
设在[0,1]上连续,在(0,1)内可导且∫0到1f(x)dx=∫0到1xf(x)dx=0,证明:存在ξ∈(0,1)使得
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)
设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)=-
设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)等于
函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,