计算二重积分∫ ∫ xy^2dxdy,D是半圆区域:x^2+y^2≤4,x≥0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 18:04:59
计算二重积分∫ ∫ xy^2dxdy,D是半圆区域:x^2+y^2≤4,x≥0
D:x² + y² ≤ 4,x ≥ 0,即x² + y² = 4的右半边,x = √(4 - y²)
∫∫_D xy² dxdy
= ∫(-2-->2) dy ∫(0-->√(4 - y²)) xy² dx
= ∫(-2-->2) x²y²/2 |(0-->√(4 - y²)) dy
= 1/2 · ∫(-2-->2) (4 - y²)y² dy
= ∫(0-->2) (4y² - y⁴) dy
= (4/3)y³ - (1/5)y⁵ |(0-->2)
= 4/3 · 2³ - 1/5 · 2⁵
= 64/15
∫∫_D xy² dxdy
= ∫(-2-->2) dy ∫(0-->√(4 - y²)) xy² dx
= ∫(-2-->2) x²y²/2 |(0-->√(4 - y²)) dy
= 1/2 · ∫(-2-->2) (4 - y²)y² dy
= ∫(0-->2) (4y² - y⁴) dy
= (4/3)y³ - (1/5)y⁵ |(0-->2)
= 4/3 · 2³ - 1/5 · 2⁵
= 64/15
二重积分计算∫∫(x^2-y^2)dxdy D是闭区域0
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1
计算二重积分∫∫x^1/2 dxdy,其中积分区域D是{(x,y)|x^2+y^2≤x}. 求大神解答,谢谢!
计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域
∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.
二重积分问题 (1)计算∫∫根号下(y^2-xy) dxdy,区域D={y=x,x=0,y=1} (2)区域D={(X,
计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2
求·二重积分∫∫(x+y)^2dxdy,其中积分区域D:x^2+y^2≤4
计算二重积分∫∫ln(x^2+y^2)dxdy,其中积分区域D={(x,y)/1
使用极坐标计算二重积分∫∫(4-x^2-y^2)^(1/2)dxdy ,D的区域为x^2+y^2=0所围.
计算二重积分∫∫根号(x+1)dxdy区域D为x^2+y^2小于等于4与y大于等于0
计算二重积分∫∫√(Y平方减去XY)dxdy,D是由Y=X Y=1 X=0围成的平面区域