1、有六个1克重的球,一个二克的和一个三克的,共八个球,将他们分别编上1~8号,放在天平上称:1+2+3比4+5+6+7
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:54:05
1、有六个1克重的球,一个二克的和一个三克的,共八个球,将他们分别编上1~8号,放在天平上称:1+2+3比4+5+6+7轻|2+6+8比1+3+4+5重|2+4+5比1+8+3重 问二克和三克的是那两个球
2、绕湖一周是24KM,甲与乙从湖边的某一地点同时出发反向而行.甲以每小时六千米的速度每走五十分钟后休息十分钟,乙以每小时四千米的速度每走一小时后休息五分钟,问他们两人出发多久后第一次相遇?
3、2010年春天,我国五省遭遇了严重旱灾,政府为了解决村民饮水问题,在山下的泉水旁修建了一个蓄水池,每小时有40m³的水注入水池中.第一周开动五台抽水机2.5小时抽完一池水 接着第二周开通八台抽水机1.5小时就把一池水抽完.第三周开动13台抽水机 问几小时可以把这池水抽完?
2、绕湖一周是24KM,甲与乙从湖边的某一地点同时出发反向而行.甲以每小时六千米的速度每走五十分钟后休息十分钟,乙以每小时四千米的速度每走一小时后休息五分钟,问他们两人出发多久后第一次相遇?
3、2010年春天,我国五省遭遇了严重旱灾,政府为了解决村民饮水问题,在山下的泉水旁修建了一个蓄水池,每小时有40m³的水注入水池中.第一周开动五台抽水机2.5小时抽完一池水 接着第二周开通八台抽水机1.5小时就把一池水抽完.第三周开动13台抽水机 问几小时可以把这池水抽完?
1.
1+2+3比4+5+6+7轻
说明1,2,3当中没有3克的
2+6+8比1+3+4+5重
说明1,3,4,5中没有3克的
2+4+5比1+8+3重
说明1,3,8中,没有3克的
那么,3克的就是6或7号
再来看2+4+5比1+8+3重
这6个当中没有3克的,那么2克的就是2,4,5中的一个
1,3,8都是1克的.
如果3克的是7号,那么6号就是1克
再来看2+6+8比1+3+4+5重
6,8都是1克,1,3,4,5加起来至少4克,那么2至少要3克
矛盾,所以3克的不是7号,那就只能是6号,那么7号就是1克
继续看2+6+8比1+3+4+5重
现在知道6号是3克,2克的是2,4,5中的一个
如果不是2号,那么1,3,4,5就起来就是5克
2,6,8加起来也是5克,矛盾
所以2克的是2号.
综上,2克的是2号,3克的是6号.
2.
乙的周期长,用乙的周期来计算.
乙的周期为65分钟,
第一个65分钟,
甲行了(65-10)/60*6=5.5千米
乙行了4千米
第二个65分钟,
甲又行了5.5千米,乙行了4千米
甲乙还相距:24-(5.5+4)×2=5千米
甲离下次休息还有:60×3-10-65×2=40分钟=2/3小时
甲乙相遇还需要:5/(5+4)=0.5小时
1+2+3比4+5+6+7轻
说明1,2,3当中没有3克的
2+6+8比1+3+4+5重
说明1,3,4,5中没有3克的
2+4+5比1+8+3重
说明1,3,8中,没有3克的
那么,3克的就是6或7号
再来看2+4+5比1+8+3重
这6个当中没有3克的,那么2克的就是2,4,5中的一个
1,3,8都是1克的.
如果3克的是7号,那么6号就是1克
再来看2+6+8比1+3+4+5重
6,8都是1克,1,3,4,5加起来至少4克,那么2至少要3克
矛盾,所以3克的不是7号,那就只能是6号,那么7号就是1克
继续看2+6+8比1+3+4+5重
现在知道6号是3克,2克的是2,4,5中的一个
如果不是2号,那么1,3,4,5就起来就是5克
2,6,8加起来也是5克,矛盾
所以2克的是2号.
综上,2克的是2号,3克的是6号.
2.
乙的周期长,用乙的周期来计算.
乙的周期为65分钟,
第一个65分钟,
甲行了(65-10)/60*6=5.5千米
乙行了4千米
第二个65分钟,
甲又行了5.5千米,乙行了4千米
甲乙还相距:24-(5.5+4)×2=5千米
甲离下次休息还有:60×3-10-65×2=40分钟=2/3小时
甲乙相遇还需要:5/(5+4)=0.5小时
有编号1至8的八个球,其中六个球一样重,另两个轻0.7克,小明用天平称了3次,得到结果如下:1+2比3+4重,
小王有六个砝码,共重63千克,每个砝码的重量都是整数克,只允许将砝码放在天平的一边称药粉,可以称出1克
有4个砝码,共重40克,现有一个天平,问这4个砝码分别为多少克?可以称出1-40克的重量.
用天平称东西时,一般在天平的一边放砝码,另一边放物品.现在有1克、2克、4克、8克的砝码各一个,想想,分别能称出多少克的
把1,2,3,4,5,6,7,8八个数字填在正方形的八个顶点处使六个平面上四个数相加的和相等
现有1克,2克,4克和8克的砝码各一个,在天平上可以称出多少种不同重量的物体?要一一列举
用一架天平和10个重量均为整数克数的砝码,可以直接称出1---2002的所有整克数的重量,只能放在天平的一边,最重的一个
把□△○三种零件放在天平上称,情况如图所示,如果这3个零件各一个 共重66千克,这三种零件的重量是多少
将1~8这八个数放在一个正方体的八个顶点上,使任意一面上的四个数字中任意三数之和不小于10,求各个面上四数之和的最小值.
用天平称物体度费质量离不开砝码.若称物体的质量时,允许在天平两边的盘子上同时放砝码,那么要称出1克、2克、3克、4克的物
1.(1)用天平称一个塑料瓶的质量,然后将其间碎再放到天平上称,比较这个物体在形状变化前后的质量.
一个立方体的六个面上分别标有1,2,3,4,5,6中的一个数字,下面是这个立方体的三种不同放法