设向量组a1,a2,a3,.,am与向量组a1,a2,.,am,b的秩相等,试证:l两向量组等价
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:36:53
设向量组a1,a2,a3,.,am与向量组a1,a2,.,am,b的秩相等,试证:l两向量组等价
let
很明显
向量组a1,a2,a3,.,am is a subset of 向量组a1,a2,.,am,b
因为 rank of {a1,a2,a3,.,am} = rank of {a1,a2,.,am,b}
b must be linearly combination of a1,a2,...,am
b = k1'a1+k2'a2+.+km'am
any linearly combination of a1,a2,.,am,b
= k1"a1+k2"a2+...+km"am+km+1"b
=k1"a1+k2"a2+...+km"am + k1'a1+k2'a2+.+km'am
=(k1"+k1')a1+ (k2"+k2')a1+...+(km"-km')am
is a linearly combination of {a1,a2,...,am}
=> 向量组a1,a2,.,am,b is a subset of 向量组a1,a2,.,am
=>向量组a1,a2,a3,.,am= 向量组a1,a2,.,am
很明显
向量组a1,a2,a3,.,am is a subset of 向量组a1,a2,.,am,b
因为 rank of {a1,a2,a3,.,am} = rank of {a1,a2,.,am,b}
b must be linearly combination of a1,a2,...,am
b = k1'a1+k2'a2+.+km'am
any linearly combination of a1,a2,.,am,b
= k1"a1+k2"a2+...+km"am+km+1"b
=k1"a1+k2"a2+...+km"am + k1'a1+k2'a2+.+km'am
=(k1"+k1')a1+ (k2"+k2')a1+...+(km"-km')am
is a linearly combination of {a1,a2,...,am}
=> 向量组a1,a2,.,am,b is a subset of 向量组a1,a2,.,am
=>向量组a1,a2,a3,.,am= 向量组a1,a2,.,am
线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价
设n维向量组a1,a2,a3,...,am相性相关,则组中有什么样的关系
如果向量组a1,a2,...,am线性无关,证:a1-a2,a2-a3.am-1-am,am-al线性相关
向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2
证明向量组b1,b2..,bm与向量组a1,a2,..,am有相同的秩
设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关.
设向量组b1=a1+ca2+ba3,b2=a2+da3,b3=a3,证明向量组a1.a2.a3与b1.b2.b3秩相等
两个线性代数的证明题证明:若向量组a1,a2,a3,...am线性无关,a1,a2,a3,...am,b线性相关,则b可
证明向量组等价设b1=a2+a3+--------+anb2=a1+a3+--------+an------------
设b1=a1,b2=a1+a1,.bm=a1+a2+...+am证明向量组a1,a2,...am与b1,b2...bm等
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2 ()
设n维向量组a1,a2,...,am线性无关,a1,a2,...,am,B线性相关,试用两种不同方法证明B可由,