已知F1,F2分别是椭圆x^2/25+y^2/9=1的左右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|向量PF1|-
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:26:35
已知F1,F2分别是椭圆x^2/25+y^2/9=1的左右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|向量PF1|-|向量PF2|=4,则向量PQ(向量PF1-向量PF2)等于
分析:因为作为选择填空题,可以以特殊带一般.可以取Q的特殊位置假设Q在原点上.
因为Q是y轴上的一个动点,所以可取原点这个特殊位置来解;
又P为椭圆上一点,F1、F2为椭圆的左、右焦点,| PF1 |+| PF2 |=10,且| PF1 |-| PF2 |=4
∴| PF1 |=7,| PF2 |=3,
∴ PQ •( PF1 - PF2 )= PO • F2F1
=1/2*( PF1 + PF2 )*( PF1 - PF2 )
=1 2 (| PF1 |^2-| PF2 |^2)=20
故答案为:20
因为Q是y轴上的一个动点,所以可取原点这个特殊位置来解;
又P为椭圆上一点,F1、F2为椭圆的左、右焦点,| PF1 |+| PF2 |=10,且| PF1 |-| PF2 |=4
∴| PF1 |=7,| PF2 |=3,
∴ PQ •( PF1 - PF2 )= PO • F2F1
=1/2*( PF1 + PF2 )*( PF1 - PF2 )
=1 2 (| PF1 |^2-| PF2 |^2)=20
故答案为:20
设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小
已知椭圆E:x^2/2+y^2/4=1的左、右焦点分别是F1,F2,点P为椭圆E第一象限上一点,且满足向量(PF1)点乘
设F1,F2分别是椭圆x^/9+y^/4的左右焦点.若点p在椭圆上,且向量PF1和PF2的模=2根号5.求PF1.PF2
P是椭圆X^/16+Y^/9=1上一点,F1,F2分别是椭圆的左右焦点,若|PF1|.|PF2|=12,则∠F1PF2的
设F1、F2分别是椭圆x^2/16+y^2/7=1的左右焦点,若点P在椭圆上,且向量PF1点乘向量PF2=0,则向量PF
已知点P(3,4)是椭圆X^2/a^2+y^2/b^2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若向量PF1
已知F1,F2分别是椭圆x^2/16+y^2/7=1的左、右焦点,若点P在椭圆上,且PF1*PF2=0,求||向量PF1
已知椭圆x平方/2+y平方/4=1两焦点分别为F1,F2,P是椭圆的第一象限弧上一点,并满足向量PF1乘以向量PF2=1
已知椭圆(x^2)/2+(y^2)/4=1两焦点分别为F1、F2,P是椭圆在第一象限的图像上的一点,并满足向量PF1·P
一道圆锥曲线数学题设F1,F2分别是椭圆X^2/4+y^2=1的左右焦点.(1)若P是该椭圆上一动点,求向量PF1·PF
已知P为椭圆x^2/49+y^2/24=1上一点,F1,F2为焦点,若PF1垂直PF2,则三角形PF1F2的面积是
高中数学题:已知椭圆x²+y²/2=1的两个焦点是F1,F2,点P在椭圆上,且PF1垂直F1,则|P