分解因式:n(n+1)(n+2)(n+3)+1 步骤1=(n^2+3n)(n^2+3n+2)+1 =(n^2+3n)^2
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
1 + (n + 1) + n*(n + 1) + n*n + (n + 1) + 1 = 2n^2 + 3n + 3
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简(n+1)(n+2)(n+3)
2^n/n*(n+1)
证明:1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=3^n .(n∈N+)
计算:n(n+1)(n+2)(n+3)+1
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)..
化简:1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)