如图所示,以△ABC的三边为边,分别作三个等边三角形.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:09:10
如图所示,以△ABC的三边为边,分别作三个等边三角形.
(1)求证四边形ADEF是平行四边形;
(2)△ABC满足什么条件时,四边形ADEF是菱形是矩形?
(3)这样的平行四边形ADEF是否总是存在?
(1)求证四边形ADEF是平行四边形;
(2)△ABC满足什么条件时,四边形ADEF是菱形是矩形?
(3)这样的平行四边形ADEF是否总是存在?
(1)证明:∵△ABD,△BCE,△ACF都是等边三角形,
∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,
BC=BE=CE,AC=AF=FC.
∵∠ABD=∠EBC=60°,
∴∠ABD-∠ABE=∠EBC-∠ABE.
∴∠DBE=∠ABC,
∴△DBE≌△ABC,
∴DE=AC.
∵AC=AF,
∴DE=AF.
同理可得,△EFC≌△BAC,
得EF=AB,
∴EF=AD,
∴四边形ADEF是平行四边形.
(2)当AB=AC时,四边形ADEF是菱形.理由如下:
∵AB=AD,AF=AC,
又AB=AC,
∴AD=AF.
又∵四边形ADEF为平行四边形,
∴平行四边形ADEF是菱形.
当∠BAC=150°时,四边形ADEF是矩形.
理由如下:
∵∠BAD=∠CAF=60°,∠BAC=150°,∠BAD+∠CAF+∠BAC+∠DAF=360°,
∠DAF=90度.
又∵四边形ADEF是平行四边形,
∴四边形平行四边形ADEF是矩形.
(3)当∠BAC=60°时,不存在这样的平行四边形ADEF.理由如下:
∵当∠BAC=60°时,
有∠DAF=60°+60°+60°=180°,
即D,A,F三点在同一直线上时,不存在这样的平行四边形ADEF.
∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,
BC=BE=CE,AC=AF=FC.
∵∠ABD=∠EBC=60°,
∴∠ABD-∠ABE=∠EBC-∠ABE.
∴∠DBE=∠ABC,
∴△DBE≌△ABC,
∴DE=AC.
∵AC=AF,
∴DE=AF.
同理可得,△EFC≌△BAC,
得EF=AB,
∴EF=AD,
∴四边形ADEF是平行四边形.
(2)当AB=AC时,四边形ADEF是菱形.理由如下:
∵AB=AD,AF=AC,
又AB=AC,
∴AD=AF.
又∵四边形ADEF为平行四边形,
∴平行四边形ADEF是菱形.
当∠BAC=150°时,四边形ADEF是矩形.
理由如下:
∵∠BAD=∠CAF=60°,∠BAC=150°,∠BAD+∠CAF+∠BAC+∠DAF=360°,
∠DAF=90度.
又∵四边形ADEF是平行四边形,
∴四边形平行四边形ADEF是矩形.
(3)当∠BAC=60°时,不存在这样的平行四边形ADEF.理由如下:
∵当∠BAC=60°时,
有∠DAF=60°+60°+60°=180°,
即D,A,F三点在同一直线上时,不存在这样的平行四边形ADEF.
如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD,△BCE,△ACF,
分别以直角三角形ABC的三边为边,向外作三个等边三角形,其面积分别为S1,S2,S3
以△ABC的三边为边在BC的同一侧,分别作三个等边三角形,即△ABD,△BCE,△ACF,画出图形并回答
如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,
如图,分别以△ABC的三边为边,在BC的同侧作三个等边三角形:△ABD,△BCE,△ACF
【初二*几何!~】如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF
以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD,△BCE,△ACF.求证四边形ADEF是什么四边形?(要求
如图以△ABC的三边为边,在BC的同侧分别作三个等边三角形,即△ABD,△BCE,
如图所示,以△ABC的三边为一边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.证明:四边形ADEF为平行
如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCF,△ACE.求证四边形AEFD是平行四边
如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题,并说明理由.
如图,以三角形ABC的三边为边,分别做三个等边三角形.1)求证:四边形ADEF是平行四边形;