作业帮 > 数学 > 作业

在正方体ABCDA1B1C1D1的棱长为a,求平面C1BD与平面BCD所成的二面角的正切值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:09:51
在正方体ABCDA1B1C1D1的棱长为a,求平面C1BD与平面BCD所成的二面角的正切值
在正方体ABCDA1B1C1D1的棱长为a,求平面C1BD与平面BCD所成的二面角的正切值
连AC交BD于O,
∵正方体AC1,
∴CC1⊥底面BD,AC⊥BD,
∴C1O⊥BD,
∴∠COC1是二面角C-BD-C1的平面角.
CO=AC/2=a√2/2,CC1=a,
∴tanCOC1=CC1/CO=√2,为所求.