求曲线积分设C为圆周x^2+y^2=ax(a>0),则曲线积分I=∮c√(x^2+y^2)ds的值是多少?有四个选项,(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:07:02
求曲线积分
设C为圆周x^2+y^2=ax(a>0),则曲线积分I=∮c√(x^2+y^2)ds的值是多少?
有四个选项,(A)a^2,(B)2a^2 (C) 3a^2 (D) 4a^2
设C为圆周x^2+y^2=ax(a>0),则曲线积分I=∮c√(x^2+y^2)ds的值是多少?
有四个选项,(A)a^2,(B)2a^2 (C) 3a^2 (D) 4a^2
答:
修改一下,这次对了.
∮c√(x^2+y^2)ds = ∫L1√(x^2+y^2)ds +∫L2√(x^2+y^2)ds
=∫0到a √(ax) * √(1+y1'^2)dx + =∫0到a √(ax) * √(1+y2'^2)dx
其中y1=√(ax-x^2),y2=-√(ax-x^2),有y1'^2和y2'^2相等.√(1+y1'^2)=a/(2√(ax-x^2))
所以原式
=2*a/2 ∫0到a √(ax) /√(ax-x^2)dx
=a√a ∫0到a 1/√(a-x)dx
=a√a * 2√a
=2a^2
这回肯定没错了.
个人感觉这题用格林公式不太方便,因为将ds化成dxdy不太好化.
修改一下,这次对了.
∮c√(x^2+y^2)ds = ∫L1√(x^2+y^2)ds +∫L2√(x^2+y^2)ds
=∫0到a √(ax) * √(1+y1'^2)dx + =∫0到a √(ax) * √(1+y2'^2)dx
其中y1=√(ax-x^2),y2=-√(ax-x^2),有y1'^2和y2'^2相等.√(1+y1'^2)=a/(2√(ax-x^2))
所以原式
=2*a/2 ∫0到a √(ax) /√(ax-x^2)dx
=a√a ∫0到a 1/√(a-x)dx
=a√a * 2√a
=2a^2
这回肯定没错了.
个人感觉这题用格林公式不太方便,因为将ds化成dxdy不太好化.
设C为椭圆X^2/2+Y^2/4=1,其周长记为a,则曲线积分I=∮c(3xy+4x^2+2y^2)ds的值是____
求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2
(1+y)ds对x^2+y^2=a^2的有向曲线积分
曲线积分问题.求∫根号下(2y²+z²)ds,其中积分曲线c为封闭曲线x²+y²
第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0
求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y
求设L是从A(1,0)到(1,2)的线段,曲线积分∫(x+y)ds=?
曲线L为x^2+y^2=9,则曲线积分∫(x^2+y^2)ds=?
计算坐标曲线的积分 f xydx,L为圆周x^2+y^2=2ax(a〉0)去顺时针方向
设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值
求线性积分I=∫(x-y)dx/(x^2+y^2)+(x+y)dy(x^2+y^2),积分曲线c从点A(-a,0)经上半
C是圆周X^2+y^2=1,则计算对弧长的曲线积分 ∫C^e^2√x2-y2ds=( )帮 忙看下