以C(2,0)为圆心的圆C和两条射线y=x,y=-x(x均大于或等于0)都相切,动直线l与圆C相切
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:12:22
以C(2,0)为圆心的圆C和两条射线y=x,y=-x(x均大于或等于0)都相切,动直线l与圆C相切
那个看不了的
那个看不了的
.设直线L的方程为y=kx+b.A(x1,y1),B(x2,y2),M(x,y)由y=x and y=kx+b 得A(b/1-k,b/1-k),(k≠0)
同理得B(-b/1+k,b/1+k),∴x=(x1+x2)/2=kb/1-k² y=(y1+y2)/2=b/1-k²
由x和y得:k=x/y,b=(y²-x²)/y
∵圆C与y=x和y=-x都相切
∴圆C的半径r=√2
∵AB:kx-y+b=0与圆C相切,
∴|2k+b|/√k²+1=√2 ,即2k2+4kb+b2=0
将k和b代入2k2+4kb+b2=0
(y2-x2)+4x(y2-x2)-2(y2-x2)=0
∵y2≠x2,∴y2-x2+4x-2=0即(x-2)²-y²=2.(y≠0)
当L⊥x轴时,线段AB的中点M(2±√2,0)也符合上面的方程,其轨迹在∠AOB内
同理得B(-b/1+k,b/1+k),∴x=(x1+x2)/2=kb/1-k² y=(y1+y2)/2=b/1-k²
由x和y得:k=x/y,b=(y²-x²)/y
∵圆C与y=x和y=-x都相切
∴圆C的半径r=√2
∵AB:kx-y+b=0与圆C相切,
∴|2k+b|/√k²+1=√2 ,即2k2+4kb+b2=0
将k和b代入2k2+4kb+b2=0
(y2-x2)+4x(y2-x2)-2(y2-x2)=0
∵y2≠x2,∴y2-x2+4x-2=0即(x-2)²-y²=2.(y≠0)
当L⊥x轴时,线段AB的中点M(2±√2,0)也符合上面的方程,其轨迹在∠AOB内
已知以C(2,0)为圆心和两条射线Y=X和Y=-X,(X大于等于0)都相切,设动直线L与圆C相切,并交两条射线于A,B,
已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于√2.
(1/2)已知圆C:x^2+y^2=2和圆D,直线l与圆C相切于点(1,1),圆D的圆心在射线2x-y=0(x>=0)上
圆C与两平行直线x+3y-5=0和x+3y-3=0都相切,且圆心在直线2x+y+3=0上,求圆C的方程.
已知双曲线c以过原点且与圆x^2+y^2-4x+3=0相切的两条直线为渐近线,双曲线C还过椭圆y^2/4+x^2=1的两
已知圆C于两坐标轴都相切,圆心C到直线Y=-X的距离等于根号2,求圆C的方程
若圆M与定圆C:x²+y²+4x=0相切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为
已知圆c的圆心为原点O,且与x+y+4*2^1/2=0相切 ,点P在直线x=8上,过P点引圆C的两条切线PA,PB,求证
在平面直角坐标系中以C(1,-2)为圆心的圆与直线x y 3√2 1=0相切,求圆的方程.
求以C(3,-5)为圆心且与直线X-7Y+2=0相切的圆的方程!在线等~
求以C(3,-5)为圆心且与直线x-7y.+2=0相切的圆的方程
动圆M与定圆C:x^2+y^2+4x=0相外切,且与直线L:x-2=0相切,则动圆M的圆心的轨迹方程