设p是椭圆x^2/4+y^2/3=1上的点,F1和F2是焦点.求∠F1PF2的最大值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:41:38
设p是椭圆x^2/4+y^2/3=1上的点,F1和F2是焦点.求∠F1PF2的最大值
运算到cos=(6-|PF1||PF2|)/|PF1||PF2|后再怎么算
运算到cos=(6-|PF1||PF2|)/|PF1||PF2|后再怎么算
由此结论:
P为椭圆x^2/a^2+y^2/b^2=1上一动点,F1,F2为左右焦点,求|PF1|*|PF2|最值
记|PF1|=x |PF2|=y
由椭圆的定义
x+y=2a
且a-c≤x,y≤a+c
xy=x(2a-x)
=-x^2+2ax
=-(x-a)^2+a^2
对称轴x=a
在x∈[a-c,a]上单调递增
在x∈[a,a+c]上单调递减
当x=a时 最大值a^2
当x=a-c或a+c时 最小值a^2-c^2=b^2
可知3=b^2≤|PF1||PF2|≤a^2=4
cos∠F1PF2=6/(|PF1||PF2|)-1≥6/4-1=1/2
∠F1PF2≤π/3
P为椭圆x^2/a^2+y^2/b^2=1上一动点,F1,F2为左右焦点,求|PF1|*|PF2|最值
记|PF1|=x |PF2|=y
由椭圆的定义
x+y=2a
且a-c≤x,y≤a+c
xy=x(2a-x)
=-x^2+2ax
=-(x-a)^2+a^2
对称轴x=a
在x∈[a-c,a]上单调递增
在x∈[a,a+c]上单调递减
当x=a时 最大值a^2
当x=a-c或a+c时 最小值a^2-c^2=b^2
可知3=b^2≤|PF1||PF2|≤a^2=4
cos∠F1PF2=6/(|PF1||PF2|)-1≥6/4-1=1/2
∠F1PF2≤π/3
设P是椭圆X^2/9+Y^2/4上一动点,F1.F2是椭圆的两个焦点,则COS角f1pf2的最小值是
已知P是椭圆x^2/4+y^2/3=1上的点,F1,F2是两个焦点,求|PF1|*|PF2|的最大值和最小值
点P是椭圆x^2|25+y^2|16=1上的一点,F1,F2是其焦点,若角F1PF2=30°,则三角形F1PF2
设P是椭圆x^2/25+y^2/16=1上的一点,F1、F2是焦点,若∠F1PF2=30º,则
设F1,F2,是椭圆x^2/36+y^2/24=1的两个焦点,P为椭圆上的一点,已知角F1PF2=60°,
已知P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点且∠F1PF2=60度求三角形F1PF2的面积
已知点P在椭圆x*2/40+y*2/20=1上,F1,F2是椭圆的两个焦点,三角形F1PF2是直角三角形
点P事椭圆X^2/25+Y^2/9=1上的一点,F1,F2为焦点,角F1PF2=60°,求F1PF2的面积
设p是椭圆x²/9+y²/4=1上任意一点,F1,F2是椭圆的两个焦点,则cos角F1PF2的最小值
若P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=60度,则△F1PF2的面积是__
已知p为椭圆x^2/25+4y^2/75=1上一点,F1,F2是椭圆的焦点,角F1PF2=60度,求三角形F1PF2的面
已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.