如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:47:10
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:CE=CF;
(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
(1)求证:CE=CF;
(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
(1)证明:∵CD垂直平分线AB,
∴AC=CB.
∴△ABC是等腰三角形,
∵CD⊥AB,
∴∠ACD=∠BCD.
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°
∴∠EDC=∠FDC,
在△DEC与△DFC中,
∠ACD=∠BCD
CD=CD
∠EDC=∠FDC,
∴△DEC≌△DFC(ASA),
∴CE=CF.
(2)当CD=
1
2AB时,四边形CEDF为正方形.理由如下:
∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵CD=
1
2AB,
∴CD=BD=AD,
∴∠B=∠DCB=∠ACD=45°,
∴∠ACB=90°,
∴四边形ECFD是矩形,
∵CE=CF,
∴四边形ECFD是正方形.
再问: 我已经回了,不过还是谢谢了!
∴AC=CB.
∴△ABC是等腰三角形,
∵CD⊥AB,
∴∠ACD=∠BCD.
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°
∴∠EDC=∠FDC,
在△DEC与△DFC中,
∠ACD=∠BCD
CD=CD
∠EDC=∠FDC,
∴△DEC≌△DFC(ASA),
∴CE=CF.
(2)当CD=
1
2AB时,四边形CEDF为正方形.理由如下:
∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵CD=
1
2AB,
∴CD=BD=AD,
∴∠B=∠DCB=∠ACD=45°,
∴∠ACB=90°,
∴四边形ECFD是矩形,
∵CE=CF,
∴四边形ECFD是正方形.
再问: 我已经回了,不过还是谢谢了!
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上任意一点DE⊥AC于1E,DF⊥BC于点F.
点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE垂直AC于E,DF垂直BC于F.
23.如图所示,点D是线段AB的中点,点C是线段AB的垂直平分线上任意一点,DE丄AC于点E,DF丄BC于点F.
点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE垂直AC于E,DF垂直BC于F.点C运动到什么位置时
D是线段AB的中点,C是线段AB的中垂线上一点,DE垂直AC于E,DF垂直BC于F.点C运动到什么位置时,四边形C...
如图,D为等腰三角形ABC的底边BC上的任意一点,过点D作DE⊥AB于点E,DF⊥AC于点F,过点C作CM⊥AB于点M.
如图,△ABC是等边三角形,点D是BC上的任意一点,DE⊥AB于点E,DF⊥AC于点F,若BC的高为2,则DE+DF=?
如图△ABC是等边三角形,点D 是BC边上的任意一点,DE⊥AB,于点E,DF⊥AC于点F,若BC=2,求DE+DF的值
已知:如图,在Rt△ABC中,∠C=90°,线段BC的垂直平分线上DE交AB于点D,交BC于点E,DF垂直AC,垂足为F
已知线段AB =16cm,点C是AB 上任意一点 D为AC的中点E是BC的中点,求线段DE的长度
已知:如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF
已知,如图,ad是bc的垂直平分线,de⊥ab于点e,df⊥ac于点f,求证de=df